The 3-aminoacetophenone and 4-aminoantipyrine were used as precursors to prepare new six ligands. The three new ligands (L1,L2 and L3) were synthesis by reacting one mole of 3-aminoacetophenone with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as a solvent, they are:- L1 (AAA) =[N-(3-acetylphenylcarbamothioyl)acetamide] L2 (BAA) =[N-(3-acetylphenylcarbamothioyl)benzamide] L3 (MAA) =[N-(3-acetylphenylcarbamothioyl)-4-methoxy benzamide] Also three new derivatives of 4-aminoantipyrine were synthesis by reacting one mole of 4-aminoantipyrine with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as solvent and the ligands are given: L4 (AAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)acetamide] L5 (BAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)benzamide] L6 (MAD) =[N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylcarbamothioyl)-4-methoxybenzamide] These ligands were identified by FT-IR ,1H,13C-NMR,elemental analysis(C.H.N.S), electronic spectra, the molecular formula of there were concluded:- L1 (AAA) = C11H12O2N2S L2 (BAA) = C16H14O2N2S L3 (MAA) = C17H16O3N2S L4 (AAD) = C14H16N4O2S L5 (BAD) = C19H18O2N4S L6 (MAD) = C20H20O3N4S The ligands were reacted with some metal ions (M+2 =VO, Mn, Co, Ni, Cu, Zn, Cd , Hg and Pd), to give complexes with molecular formulas:- [M(AAA)2(H2O)2]Cl2 , [M(BAA)2(H2O)2]Cl2 , [M(MAA)2(H2O)2]Cl2, [M(AAD)2(H2O)2]Cl2 , [M(BAD)2(H2O)2]Cl2, [M(MAD)2(H2O)2]Cl2 Where (M+2 = Mn, Co, Ni, Cu, Zn, Cd , Hg and Pd) [VO(AAA)2]SO4 , [VO(BAA)2]SO4 , [VO(MAA)2]SO4, [VO(AAD)2]SO4 , [VO(BAD)2]SO4, [VO(MAD)2]SO4 The complexes were characterized by solubility, melting point and decomposition, FT-IR, electronic spectra, molar conductivity, magnetic susceptibility measurements, element microanalysis for some complexes and flame atomic absorption. From above results, one can conclude that complexes of (M+2 = Mn, Co, Ni, Cu, Zn, Cd, Hg and Pd) have an octahedral geometry while the square pyramid for complexes for(VO+2) The biological effects of ligands and some of their complexes have been investigated on two types of bacteria species Staphylococcus aureu a gram positive and Escherichia coli a gram negative In agricultural agar medium, the results exhibited all the compounds (expect Ni2+ with L1)have varsity anti bacterial activities
Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase (AChE) involved in the hydrolysis of the neurotransimitter acetylcholine, and butyrylcholinesterase (BChE) of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge. Human BChE has attracted attention because it can hydrolyze toxic esters and nerve agents. Here we analyze the complexes of cholinesterase with soman by describing the 3D geometry of the complex, the active site, the changes happened through the inhibition and provide a description for the mechanism of inhibition. Soman undergoes degradation in the active site of the AChE and B
... Show MoreCholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase (AChE) involved in the hydrolysis of the neurotransimitter acetylcholine, and butyrylcholinesterase (BChE) of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge. Human BChE has attracted attention because it can hydrolyze toxic esters and nerve agents. Here we analyze the complexes of cholinesterase with soman by describing the 3D geometry of the complex, the active site, the changes happened through the inhibition and provide a description for the mechanism of inhibition. Soman undergoes degradation in the active site of the AChE and BC
... Show MoreThe reactions of ozone with 2,3-Dimethyl-2-Butene (CH3)2C=C(CH3)2 and 1,3-Butadiene CH2=CHCH=CH2 have been investigated under atmospheric conditions at 298±3K in air using both relative and absolute rate techniques, and the measured rate coefficients are found to be in good agreement in both techniques used. The obtained results show the addition of ozone to the double bond in these compounds and how it acts as function of the methyl group substituent situated on the double bond. The yields of all the main products have been determined using FTIR and GC-FID and the product studies of these reactions establish a very good idea for the decomposition pathways for the primary formed compounds (ozonides) and give a good information for the effe
... Show MorePolycyclicacetal was prepared from the reaction of PEG with aldehyde derived from Erythro-ascorbic acid (pentulosono-ɣ-lactone-2,3-enedianisoate).All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR, and mass spectra.The inhibitory effect of prepared polymer on the activity of human serum AcetylCholinesterase has been studied in vitro. The polymer showed a remarkable activity at low concentration (4.7x10-3 – 4.7x10-8M).
This paper presents the synthesis and study of some new mixed-liagnd complexes containing tow amino acids[Alanine(Ala) and phenylalanine (phe)] with some metals . The results products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubilty The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) . Ala = Alanine acid = C3H7NO2 Phe = phenylalanine = C9H11NO2
Thispaperpresentsthesynthesisandstudyofsomenewmixed-liagnd complexescontainingtowaminoacids[Alanine(Ala)andphenylalanine(phe)]withsome metals .Theresultsproductswerefoundtobesolidcrystallinecomplexeswhichhave been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubiltyThe proposed structure of the complexes using program , chem office 3D(2000) .The general formula have been given for the prepared complexes :[M(A-H)(phe-H)]M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) .Ala = Alanine acid = C3H7NO2Phe = phenylalanine = C9H11NO2
This paper presents the synthesis and study of some new mixed-ligand complexes containing anthranilic acid and amino acid phenylalanine (phe) with some metals . The resulting products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity . The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg(II) , Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) . A = Anthranilic acid = C7H7NO2 Phe = phenylalanine = C9H11NO2
. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show More