Background Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and wear and corrosion resistance, influencing the biocompatibility of the surface. Such changes are brought in essentially because of the characteristic melting, evaporation and rapid solidification during laser surface remelting processes. Objectives This study was aimed at evaluating the electrochemical corrosion of commercial pure Titanium disks (CP Ti) and the Ti13Zr13Nb (Alloy) with a zigzag pattern of laser surface treatment. Materials and Methods a total of 40 discs of Cp Ti & 40 of Ti13Zr13Nb were fabricated. The surfaces of the test groups were treated with unique zigzag patterns using CNC Laser treatment on the texturing surfaces, the samples then are analyzed by using XRD, microhardness and electrochemical corrosion tests. Results The study revealed a proper increase in the surface hardness and corrosion resistance without crack formation or a dramatic change of the core substance of the CP Ti and Alloy disks. Conclusion The CNC laser is considered an effective and suitable method for surface texturing of CP Ti and Alloy for dental implantology.
The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm) and different weight percentage (0.05-0.1-0.5-1) wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro) alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS), wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of
... Show MoreThe corrosion behavior of 2024 aluminium alloy was investigated in alkaline medium (pH=13) containing 0.6 . in absence and presence of different concentrations of three amino acids separately [Methionine, Glutamice acid and Lysine] as environmentally friendly corrosion inhibitors over the temperature range (293-308)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency increased with an increase of the inhibitor concentration but decreased with increase in temperature . The maximum efficiency value was found with lysine =80.4 of 293 k and 10 . concentration of lysine. The adsorption of the amino acids was found to obey Langmuir adsorption isotherm . Some thermodynamic parameter âˆ
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreThe DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC co
... Show MoreBackground: Nowadays there is an increasing of the emphasis on aesthetic, dentist have been concerned about providing aesthetics and functional removable partial dentures to their patients and this was make the mission more difficult because of the goal now is achieving optimal aesthetic of the denture - while maintaining retentive, stable, and conservative to the health of supporting tooth and supporting tissue. The traditional use of metal clasp like cobalt-chromium, gold, stainless-steel and titanium hampers esthetics because of its obvious display conflicts with patient’s prosthetic confidentiality. Acetal resin (poly oxy methylene) may be used as alternative denture clasp material. This material was promoted primarily on the basis of
... Show MoreIn view of this work, plasma nitriding was executed on Ti-6Al-4V and the effect of nitriding by using glow discharge with 2 mbar of Ar+N2 gas on corrosion resistance with different nitriding time and studied. The structure properties and the external appearance for alloys were performed with x-ray diffraction and optical microscopic. The investigation of XRD indicates the Ti alloys are polycrystalline with a cubic type (bcc). When the external appearance of the surface indicates was of β+α structure which have been better technical properties on biomedical application. The biocompatibility investigation of nitride alloys in vitro medium containing human body fluid: we showed a layer of hydroxyapatite HAP which might
... Show MoreThe shortage of irrigation water requires specific measures. One of these measures is the application of the rationing system (a period of irrigation followed by a period of drought). This system could have an effect on the behavior and properties of irrigation canals. So, studying rationing system on the irrigation canals is important both in civil engineering and water resources engineering, especially if these channels constructed with gypsum soil. This study includes the calculation of seepage velocity and water content in each cycle (10 days wetting and 10 days of drying). The model is built for this research contains four samples, two samples for untreated soil one of them expos
Eprospective study undertaken between January 2007 and January 2011, 58 consecutive cases with compound tibial shaft fractures. All fractures were stabilized by external fixator device AO/ASIF type after failed the manipulation under anesthesia (MUA) to restore the osseous alignment. In 32 patients cancellous bone graft were used from the upper part of the tibia to enhance healing process, all these patients were followed for an average of 8–12 months. Our findings showed that stabilization of the fracture shaft tibia by external fixation with cancellous bone graft had significantly better result, than external fixation alone. We conclude that unilateral, uniplanar external fixation with early bone grafting from upper part of the tibia is
... Show MoreIn this work Polyynes was synthesized by pulse laser ablation of graphite target in ethanol solution. UV-Visible Spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR) and Transmission electron microscopy (TEM) were used to study the optical absorption, chemical bonding, particle size and the morphology. UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen – capped polyyne (Cn+1H2), the absorption peaks intensity increased when the polyynes were produced at different laser energies and the formation rats of polyynes increased with the increasing of laser pulse number. The FTIR absorption peak at 2368.4 cm-1, 1640.0 cm-1 and 1276.
... Show More