Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that •O2 and at a lower degree, photogenerated holes were mainly in charge of the boosted performance. In light of the above results of the trapping experiments, the charge transfer mechanism was discussed, and the Z-form heterojunction between BCN and CoS was taken as the reason for enhancing the photocatalytic efficiency. The stability of the CoS/BCN hybrid was also checked, showing excellent photostability performance after five degradation rounds.
Toxicity with advanced glycation end products (AGEs) is a major problem in uremic patients. Treatment with peritoneal dialysis (PD) exacerbates AGE formation as a result of bioincompatibility of the conventional peritoneal dialysis fluid (PDF). The presence of glucose degradation products (GDPs) in PDF is the main cause of its bioincompatibility. Carnosine is an endogenous dipeptide with a powerful antiglycation/antioxidant activity. In an attempt to improve PDF biocompatibility, we evaluated the effect of carnosine in human peritoneal mesothelial cells (HPMC) incubated with PDF or GDPs in vitro. Methods: HPMC were incubated for short or prolonged time with PDF in the presence or absence of carnosine. Similarly, HPMC were incubated in the s
... Show MoreAbstract
The study of oxygen mass transfer was conducted in a laboratory scale 5 liter stirred bioreactor equipped with one Rushton turbine impeller. The effects of superficial gas velocity, impeller speed, power input and liquid viscosity on the oxygen mass transfer were considered. Air/ water and air/CMC systems were used as a liquid media for this study. The concentration of CMC was ranging from 0.5 to 3 w/v. The experimental results show that volumetric oxygen mass transfer coefficient increases with the increase in the superficial gas velocity and impeller speed and decreases with increasing liquid viscosity. The experimental results of kla were correlated with a mathematical correlation des
... Show MoreFicus (FIC) leaf extract used as corrosion inhibitor for carbon steel alloy (C.S) in two corrosive environments (saline and acidic) with four concentrations (1, 2, 3 and 4 ppm) at varied temperature range between (298-328 K) using electrochemical polarization measurements. The importance of this work focused on the use the green chemistry that is far from the chemical materials effect. The results of polarization presented the FIC inhibitor consider a mixed type (anodic and cathodic) inhibitor. Tafel curve used to evaluate the corrosion inhibition activity. In a saline medium, the best inhibitor efficiency reaches to (87%) in 2 ppm and IE% reach to (99%) for HCl medium inhibited by 1ppm. Langmuir isotherm obeys the study by thermodynamic pa
... Show MoreA field experiment was conducted during winter season of 2021 at a research station of college of agricultural engineering sciences, university of Baghdad to determine the response of active fertility percentage and seed yield and its components of faba bean (Vicia faba L. cv. Aguadulce) to distance between plants and spraying of nano and traditional boron. A Randomized Complete Block Design according to split-plots arrangement was used at three replicates. The main plots were three distances between plants (25, 35 and 45 cm), while the sub plots including spraying of distilled water only (control treatment), spraying of boron at a 100 mg L-1 and spraying of nano boron at two concentrations (10 and 15 mg L-1). The results showed that the 25
... Show MoreThe buildup factor was measured after irradiating Iraq carbon black powder using each of and sources respectively, using mixing ratios 40% & 50% for thickness range . The results showed that the buildup factor depends on energy and has limited dependence on the mixing ratio. The QIFT program succeeded accenting for the experimental results even for expected values more than 4 m.f.p outside the thickness range.
The ethyl acetate synthesis via heterogeneous reactive distillation is studied experimentally using ethanol and acetic acid. Three types of cation exchanging resins were used as catalysts: Zerolit 225, Zerolit 226 and Ambylite 400. Experiments were carried out in two units of the same dimensions. Each unit consisted of three sections: rectifying, reactive and stripping sections of heights (60+25+20) cm respectively and 2.5cm column diameter. The first unit (column-A-) was a fractionation type and the second unit (column-B-) was packed column. The packing type was hollow glass cylinders with 10 mm height, and 4, 5 mm inner and outer diameter respectively.
The experiment
... Show MoreIn this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the ra
In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.