Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that •O2 and at a lower degree, photogenerated holes were mainly in charge of the boosted performance. In light of the above results of the trapping experiments, the charge transfer mechanism was discussed, and the Z-form heterojunction between BCN and CoS was taken as the reason for enhancing the photocatalytic efficiency. The stability of the CoS/BCN hybrid was also checked, showing excellent photostability performance after five degradation rounds.
The article aims to study the liquidity that is required to be provided optimally and the profitability that is required to be achieved by the bank, and the impact of both of them on the value of the bank, and their effect of both liquidity and profitability on the value of the bank. Hence, the research problem emerged, which indicates the extent of the effect of liquidity and profitability on the value of the bank. The importance of the research stems from the main role that commercial banks play in the economy of a country. This requires the need to identify liquidity in a broad way and its most important components, and how to
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreIn this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser
... Show MoreIn this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
Thin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms