Preferred Language
Articles
/
aRchWI4BVTCNdQwCtkPl
Molecular basis of differential adventitious rooting competence in poplar genotypes
...Show More Authors

Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Agriculture (pol'nohospodárstvo)
Molecular detection of ‘<i>Candidatus</i> Phytoplasma australasia’ and ‘<i>Ca.</i> P. cynodontis’ in Iraq
...Show More Authors
Abstract<p>The association of phytoplasma was investigated in symptomatic tomato (<italic>Solanum lycopersicum</italic> L.), eggplant (<italic>Solanum melongen</italic> L.), mallow (<italic>Malva</italic> spp.) and Bermuda grass (<italic>Cynodon dactylon</italic> L.) plants exhibiting witches’ broom and white leaf diseases, respectively. Total DNA was extracted from tomato (n=3), eggplant (n=2), mallow (n=2) and Bermuda grass (n=8) samples. Direct polymerase chain reaction (PCR) was performed using P1/P7 primer set, then PCR products were sequenced. Sequences obtained from tomato, eggplant and mallow shared 99% maximum nucleotide identity with phytoplasm</p> ... Show More
View Publication
Scopus (11)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Local and Global Uniqueness Theorems of the N-th Order Partial Differential Equations
...Show More Authors

In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms
...Show More Authors

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

View Publication
Clarivate
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Nov 30 2024
Journal Name
Iraqi Journal Of Science
Admissible Classes of Seven-Parameter Mittag-Leffler Operatorwith Third-Order Differential Subordination Properties
...Show More Authors

The main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.  

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Symposium On Differential Evolution (sde)
Comparative analysis of a modified differential evolution algorithm based on bacterial mutation scheme
...Show More Authors

A new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors

Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation
...Show More Authors

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication