A simple low-cost approach at various exposure times was utilized to generate cold plasma in the aim to fabricate AuNPs. UV-Visible spectra and X-ray diffraction were used to characterize the nanoparticles (XRD). Surface Plasmon resonance was observed in the synthesized AuNPs at 530, 540, and 533 nm. For all samples, the patterns of XRD show very intensive peaks implying the fcc crystalline structure of AuNPs. The average crystallite size of AuNPs is ranging between 20-30 nm. The observation of morphology by FESEM revealed the spherical formation of AuNPs. Doses of 100 and 200 ppm of AuNPs were adapted to investigate their effect on the blood-mixture with and without a 20-second of cold plasma exposure. The WBC components in the blood rose as the AuNPs doses increased, whereas, the amount of (pt) in the blood fell down throughout the two weeks of AuNPs doses for the groups which exposed to AuNPs only, the level of (pt) in the blood increased in the groups which are exposed to AuNPs combined with cold plasma. While the RBC unaffected.
Alloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analy
... Show MoreA theoretical investigation is carried out to study the effect of a pencil electron beam propagating inside the plasma region determining the hydrodynamic densities distribution with the aid of numerical analysis finite deference method (FDM).The plasma is generated and trapped by annular electron beams of fixed electron density 1x1014 m-3. The result of the study shows that the hydrodynamic density behaves as the increase in pencil electron beam. The hydrodynamic density ratio goes to more than double as the increase in pencil electron beam density to 1x1018 m-3.
The sample's physical characteristics and laser parameters impact the generation and characterization of Laser-Induced Plasma (LIP), which is a relevant phenomenon in many applications. We investigated the effect of laser energy on laser-induced Zn plasma characterization in this study. A Zn plasma with a repeating frequency of 6 Hz, a first wavelength of 1064 nm, a pulse duration of 10 ns, and a laser energy range of 300 mJ to 500 mJ was created using a Q-switched ND: YAG laser. The basic plasma properties, such as electron temperature and density, were estimated using optical emission spectroscopy (OES). The electrons' temperature was measured by the Boltzmann plot method, and the value of the electrons' temperature ranged from 1.6 eV
... Show More
summary of the research
The heart is the pine-shaped flesh on the left side of the chest. The moral gentleness in this flesh is called the home of perception, reason and understanding, as well as the place of desires and passions, so it turns between one desire and another between good and evil. As for its parts, it consists of four main parts called chambers, two rooms on the right As for the two chambers below, it is called the ventricle, the heart works regularly and accurately to pump blood and distribute it to all parts of the body and vital organs. And the Holy Quran divided the types of heart into two main types of healthy hearts, which are types (healthy, hidden, living....)
And the second type is sick hea
... Show MoreThis study aimed to explore and separate the phytochemicals of the whole plant Conyza canadensis, a naturally growing plant in Iraq, since no phytochemical research was done previously in Iraq. The whole plant of C. canadensis was defatted by maceration in hexane for 24 hours. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous ethanol 85% as a solvent extraction for 9 hours, and fractionated by petroleum ether, chloroform, ethyl acetate, and n-butanol. The petroleum ether, chloroform, and ethyl acetate fractions were analyzed by high-performance liquid chromatography (HPLC) for their steroids, alkaloids, and polyphenolic (phenolic acids and flavonoids) contents. One alkaloid was isolated from chloroform fractio
... Show MoreIn the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreEntrepreneurial events are understood to be imperious in accelerating the economic development of nations owing to a large number of jobs it creates. Thus, both developed and developing countries understand the importance of entrepreneurship education to instil student interest in entrepreneurial action. This study investigates the moderating effect of entrepreneurship education (EEP) on the relationship between attitude (ATT), subjective norms (SNMS), and perceived behavioural control (PBC) towards entrepreneurship intention (EINT) of university undergraduate students. The study population covered 794 students from all the four faculties of Northwest University Kano, that were taught a compulsory entrepreneurship education course in their
... Show MoreWhen employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model
... Show More