Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15 database by dividing the record's attributes into four groups, including State, Protocol, Service, and the rest of the features is Digits. Four DNA characters were used to represent each protocol attribute values. While two DNA characters are used to represent State, Service and Digits attributes values. Then, the clustering method is applied to classify the records into two clusters, either attack or normal. The current experiment results showed that the proposed system has achieved a good detection rate and accuracy results equal to 81.22% and 82.05% respectively. Also, the system achieved fast encoding and clustering time that equal 0.385 seconds and 0.00325 seconds respectively for each record.
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm
To achieve safe security to transfer data from the sender to receiver, cryptography is one way that is used for such purposes. However, to increase the level of data security, DNA as a new term was introduced to cryptography. The DNA can be easily used to store and transfer the data, and it becomes an effective procedure for such aims and used to implement the computation. A new cryptography system is proposed, consisting of two phases: the encryption phase and the decryption phase. The encryption phase includes six steps, starting by converting plaintext to their equivalent ASCII values and converting them to binary values. After that, the binary values are converted to DNA characters and then converted to their equivalent complementary DN
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreAmong the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show More