Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15 database by dividing the record's attributes into four groups, including State, Protocol, Service, and the rest of the features is Digits. Four DNA characters were used to represent each protocol attribute values. While two DNA characters are used to represent State, Service and Digits attributes values. Then, the clustering method is applied to classify the records into two clusters, either attack or normal. The current experiment results showed that the proposed system has achieved a good detection rate and accuracy results equal to 81.22% and 82.05% respectively. Also, the system achieved fast encoding and clustering time that equal 0.385 seconds and 0.00325 seconds respectively for each record.
This project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show MoreArtificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this 
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will 
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to 
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the 
domain of optimization and operation research. Several research papers dealt with methods of solving this 
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested 
employing the improved algorithm to confirm its effectiveness and evaluate its ex
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThe flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxi
... Show MoreCarrageenan extract is a compound of sulfated polyglycan that is taken out from red seaweeds. Being hydrocolloid in nature, carrageenan has gelling, emulsifying and thickening properties allowing it to be commonly used in the oral healthcare products and cosmetics. Due to its bioactive compounds, carrageenan has been shown to have antimicrobial, antiviral, and antitumor properties. The purpose of this work is to study the probable use of carrageenan on the diseases that are related to oral cavity and on the genomic DNA in in vitro experimental model
In this study, the effects of k-carrageenan on four different cell lines related to the cancer and normal cells which cultured on selective media were done. Moreover, the eff
... Show MoreFinding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
 
        