Preferred Language
Articles
/
aRbXvYoBVTCNdQwC8qQ2
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15 database by dividing the record's attributes into four groups, including State, Protocol, Service, and the rest of the features is Digits. Four DNA characters were used to represent each protocol attribute values. While two DNA characters are used to represent State, Service and Digits attributes values. Then, the clustering method is applied to classify the records into two clusters, either attack or normal. The current experiment results showed that the proposed system has achieved a good detection rate and accuracy results equal to 81.22% and 82.05% respectively. Also, the system achieved fast encoding and clustering time that equal 0.385 seconds and 0.00325 seconds respectively for each record.

Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Scopus (45)
Crossref (46)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Sep 23 2022
Journal Name
Specialusis Ugdymas
Intrusion Detection System Techniques A Review

With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.

Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Fast encoding algorithm based on Weber's law and Triangular Inequality Theorem

In the present work, an image compression method have been modified by combining The Absolute Moment Block Truncation Coding algorithm (AMBTC) with a VQ-based image coding. At the beginning, the AMBTC algorithm based on Weber's law condition have been used to distinguish low and high detail blocks in the original image. The coder will transmit only mean of low detailed block (i.e. uniform blocks like background) on the channel instate of transmit the two reconstruction mean values and bit map for this block. While the high detail block is coded by the proposed fast encoding algorithm for vector quantized method based on the Triangular Inequality Theorem (TIE), then the coder will transmit the two reconstruction mean values (i.e. H&L)

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 26 2018
Journal Name
Communications In Computer And Information Science
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Intrusion Detection System Using Data Stream Classification

Secure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.

Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Text Steganography Method Based On Modified Run Length Encoding

Data hiding (Steganography) is a method used for data security purpose and to protect the data during its transmission. Steganography is used to hide the communication between two parties by embedding a secret message inside another cover (audio, text, image or video). In this paper a new text Steganography method is proposed that based on a parser and the ASCII of non-printed characters to hide the secret information in the English cover text after coding the secret message and compression it using modified Run Length Encoding method (RLE). The proposed method achieved a high capacity ratio for Steganography (five times more than the cover text length) when compared with other methods, and provides a 1.0 transparency by depending on som

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conference Proceedings
Developing a lightweight cryptographic algorithm based on DNA computing

This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of

... Show More
Crossref (4)
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Design of an Efficient Face Recognition Algorithm based on Hybrid Method of Eigen Faces and Gabor Filter

Face recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.

View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Development an Anomaly Network Intrusion Detection System Using Neural Network

Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt

... Show More
Crossref
View Publication Preview PDF