The study aimed to purification of acid phosphatase (ACP) from sera of obesetype 2 diabetes mellitus patients, this study included from thirty T2DM patients and thirty control, purification process was done with several steps included precipitation with inorganic salt (NH4 ) 2SO4 30%-80%, dialysis, ion exchange chromatography by DEAE sepharose anion column and size exclusion chromatography by Sepharose 6B.ACP, BMI, FBS, HbA1c, Lipid profile, Urea, Creatinie, Insuline, Homa-IR were determined. Results showed the precipitate and concentrated protein appeared four peaks in ion exchange column. ACP located in the first and second peak with purification fold (21.1), (37.2) yield of enzyme and specific activity (173.3) IU/ml, which obtained a single peakby gel filtration chromatography, the degree of purification (34.1) fold, yield of enzyme (20.5) with specific activity (280) IU/ml. Also, the peak that has the highest enzymatic activity showed single peak after eluted in gel filtration chromatography following steps by using SDS-PAGE Electrophoresis. From this study, it is concluded acid phosphatase which purification from sera of obese T2DM patients have two isoenzymes, also, concluded the purified enzyme had an optimum temperature (500C) and optimum pH (5). Purity and molar mass was measured using (SDS.PAGE) electrophoresis showing approximately ~ 56 KD with single band.
The need for wireless sensing technology has rapidly increased recently, specifically the usage of electromagnetic waves which becoming more required as a source of information. Silicon carbide (SiC) Nano particles has been used in this study, the material under test (MUT) was exposed directly to a microwave field to examine the electromagnetic behavior. The permittivity and permeability were investigated with different filler materials to approach best and optimal electromagnetic absorbing characteristics to assist engineers to monitor structure-based composite for defects evaluation that may occur during operation conditions or through manufacturing process. XRD, FESEM and both complex permittivity and permeability were measured f
... Show MoreComplexes of Co(II),Ni(II),Cu(II) and Zn(II) with mixed ligands of phenylalanine (L) and tributylphosphine (TBPh) were prepared in aqueous ethanol with (2:1:1) (M:L:TBPh). The prepared complexes were characterized using flame atomic absorption,(C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the phenylalanine and complexes against two selected type of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structure was suggested for all prepared complexes.
Twelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
Coblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
A variety of new phenolic Schiff bases derivatives have been synthesized starting from Terephthaladehyde compound, all proposed structures were supported by FTIR, 1H-NMR, 13C-NMR, Elemental analysis, some derivatives evaluated by Thermal analysis (TGA).
Coupling reaction of 4-amino antipyrene with 2,6-dimethyl phenol gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII, ZnII, CdII, and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UVVis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied followin
... Show MoreIn this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou
... Show MoreIn this study, the nanocrystal-ZnS-loaded graphene was synthesized by a facile coprecipitation route. The effect of graphene on the characterization of Zinc Sulphide (ZnS) was investigated. The X-ray Diffraction (XRD) results reveal that ZnS has cubic system while hexagonal structure which is observed by loading graphene during the preparation of ZnS. Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the presence of all expected elements in the prepared materials. Nanosize of fabricated materials has been measured using Scanning Electron Microscopy (SEM) technique. This study also found that the graphene plays a critical role in lowering the optical energy gap of ZnS nanoparticles from 4 eV to 3.2 eV. The characterization of detec
... Show MoreThis work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show More