A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete layers within a pavement structure by using their individual MR values. To achieve this aim, eight samples were cored from Iraqi Expressway no. 1; they had three layers of asphalt and were tested to obtain the MR of each core by using the uniaxial repeated loading test at 25 and 40 °C. The samples were then cut to separate each layer individually and tested for MR at the same testing temperatures; thus, a total of 60 resilient modulus tests were conducted. A new approach was introduced to estimate the equivalent MR as a function of the MR value for each layer. The results matched the values obtained by KENPAVE analysis.
This research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show MoreThis research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show More
Asphalt Hot Mix (HMA) is mainly applied in highway construction in Iraq because of its economic advantage and easy maintenance. Various factors impact the performance of HMA in the field. It is one of the significant impacts on aggregate gradation. The Universal Specification for Roads and Bridges in Iraq (SCRB) limits the different types of asphalt layers and allows for designed tolerance aggregate gradation. It is quite hard for contractors in the present asphalt industries to achieve the required job mix because of sieves' control problems. This study focuses on the effects on the required specification performance of aggregate deviations by using original and modified asphalt binder with AC(40-50) and
... Show MoreAlginate from Large brown seaweeds act as natural polymer has been investigated as polymer and has been added to concrete in different percentages ( 0% , 0.5% , 1% and 1.5% ) by the cement weight and the study show the effect of using alginate biopolymer admixtures on some of the fresh properties of the concrete (slump & the density fresh) also in the hardened state ( Compressive strength , Splitting tensile strength and Flexural strength ) at 28 days. The mix proportion was (1:2.26:2.26) (cement: sand: gravel) respectively and at constant w/c equal to 0.47. The results indicate that the use of alginate as a percent of the cement weight possess a positive effect on fresh properties of co
... Show MoreImproving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.
This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv
... Show MoreThis paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul
... Show MoreOne of the most essential components of asphalt pavements is the filler. It serves two purposes. First, this fine-grained material (diameter less than 0.075 mm) improves the cohesiveness of aggregate with bitumen. Second, produce a dense mixture by filling the voids between the particles. Aluminum dross (AD), which is a by-product of aluminum re-melting, is formed all over the world. This material causes damage to humans and the environment; stockpiling AD in landfills is not the best solution. This research studies the possibility of replacing part of the conventional filler with aluminum dross. Three percent of dross was used, 10, 20, and 30% by filler weight. The MarshallMix design method was adopted to obtain the op
... Show MoreThe performance grading system (superpave) has provided means to incorporate binder characteristics with
pavement failure types. It’s a comprehensive system that relates climate, traffic conditions and aging with
critical pavement distress. The objective of this paper is to develop an improved asphalt binder grading
system for Iraq based on the principal of superpave. The country was divided into different zones according
to the highest and lowest temperature ranges and traffic loading. The Performance graded binder proposed
for each zone was compared with some States of USA that have same hot weather of Iraq by using Long
Term Pavement Performance (LTPP v3.1) software. Iraqi asphalt samples were tested using the Supe