A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete layers within a pavement structure by using their individual MR values. To achieve this aim, eight samples were cored from Iraqi Expressway no. 1; they had three layers of asphalt and were tested to obtain the MR of each core by using the uniaxial repeated loading test at 25 and 40 °C. The samples were then cut to separate each layer individually and tested for MR at the same testing temperatures; thus, a total of 60 resilient modulus tests were conducted. A new approach was introduced to estimate the equivalent MR as a function of the MR value for each layer. The results matched the values obtained by KENPAVE analysis.
Permanent deformation (Rutting) of asphalt pavements which appears in many roads in Iraq, have caused a major impact on pavement performance by reducing the useful service life of pavement and creating services hazards for highway users. The main objective of this research is investigating the effect of some contributory factors related to permanent deformation of asphalt concrete mixture. To meet the objectives of this research, available local materials are used including asphalt binder, aggregates, mineral filler and modified asphalt binder. The Superpave mix design system was adopted with varying volumetric compositions. The Superpave Gyratory Compactor was used to compact 24 asphalt concrete cylindrical specimens. To collect t
... Show MoreMany waste materials can be repurposed effectively within asphalt concrete to enhance the performance and sustainability of pavement. One of these waste materials is sawdust ash (SDA). This study explores the beneficial use of SDA as a substitute for limestone dust (LD) mineral filler in asphalt concrete. The replacement rate was 0%, 15%, 30%, 45%, and 60% by weight of total mineral filler. Scanning electron microscopy (SEM) was employed to assess the surface morphology of Sawdust (SD), SDA, and LD. In addition, a series of tests, including Marshall stability and flow, indirect tensile strength,moisture susceptibility, and repeated uniaxial loading tests, were conducted to examine the performance characteristics of asphalt mixtures of diffe
... Show MoreModern asphalt technology has adopted nanomaterials as an alternative option to assert that asphalt pavement can survive harsh climates and repeated heavy axle loading during service life and prolong pavement life. This work aims to elucidate the behavior of the modified asphalt mixture fracture model and assess the fatigue and Rutting performance of Hot Mix Asphalt (HMA) mixes using the outcomes of indirect Tensile Strength (IDT), Semicircular bend (SCB) and rutting resistance; for this, a single PG (64−16) nanomodified asphalt binder with 5 % SiO2 and TiO2 have been investigated through a series of laboratory tests, including: Resilient modulus, Creep compliance, and tensile strength, SCB, and Flow Number (FN) to study their potential
... Show MoreBasrah crude oil Vacuum residue 773+ K with specific gravity 1.107 and 4.87wt. % sulfur, was treated with hexane commercial fraction provided from Al-Taji Gas Company for preparing deasphaltened oil(DAO)suitable for hydrotreating process. Deasphaltening was carried out with 1h mixing time, 10ml:1g solvent to oil ratio and at room temperature. Hexane deasphaltened oil was hydrotreated on presulfied commercial Co-Mo/γ-Al2O3 catalyst in a trickle bed reactor. The hydrotreating process was carried out at temperature 660 K,LHSV 1.3 h^ –1, H2/oil ratio 300 l/l and constant pressure of 4MPa. The hydrotreated product was distillated under vacuum distillation unit. It is found that the mixture of 75% of vacuum residue with 25% anthracene satisfie
... Show MoreThe effects of scattering and secondary radiation generated inside the material on dose equivalent rate where studied using Co60 and Cs137 sources of activity (199.8 , 177.6) MBq , respectively for different thicknesses of Al , Pb and Pb- glass . The results showed that the equivalent rate increases when the effect of scattering was included for Al and Pb shields with cobalt-60 source of energy 1.25 MeV ; and decreases for Pb shield with Cs-137 source of energy 0.662MeV .The results showed also that the atomic number of The material effects the dose equivalent rate . The Pb-glass shield was found to be more efficient in absorption than other shields.
Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
The response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this work is
... Show MoreThe response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this wo
... Show MoreThe microstructures of rapidly solidified laser clad layers of laser cladding of Inconel 617 with different nickel-aluminum premixed clad powders are discussed. The effect of different cladding speeds on the microstructures of rapidly solidified laser clad layers is discussed too. The detailed microstructural results showed that different growth mechanisms are produced during rapid solidification. These are planar, cellular, cellular/dendritic and dendritic.