The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of data transmission at the original targeted location. Initially, healthcare data was collected. Preprocessing is achieved by the normalization method. An EEEF data offloading scheme is proposed. A fruit fly optimization (FFO) technique is utilized. The performance metrics such as energy consumption, delay, resource utilization, scalability, and packet loss are analyzed and compared with existing techniques. The future scope will make use of a revolutionary optimization approach for IoMT.
Learning the vocabulary of a language has great impact on acquiring that language. Many scholars in the field of language learning emphasize the importance of vocabulary as part of the learner's communicative competence, considering it the heart of language. One of the best methods of learning vocabulary is to focus on those words of high frequency. The present article is a corpus based approach to the study of vocabulary whereby the research data are analyzed quantitatively using the software program "AntWordprofiler". This program analyses new input research data in terms of already stored reliable corpora. The aim of this article is to find out whether the vocabularies used in the English textbook for Intermediate Schools in Iraq are con
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreObjective: The purpose of this study was to assess the effectiveness of Vibriophage Universiti Sains Malaysia 8 (VPUSM 8), a bacteriophage that destroys bacteria, in managing the proliferation of Vibrio cholerae, specifically the El Tor serotype, as an alternate therapeutic strategy. Methods: The study entailed subjecting water samples from Kelantan, Malaysia, to reproduce the natural circumstances that promote the growth of V. cholerae. Subsequently, the samples were contaminated with the V. cholerae O1 El Tor Inaba strain and treated using VPUSM 8. The study employed a controlled experimental design, wherein the samples were divided into three groups, each experiencing different treatment methods. Quantifying the number of colony-
... Show MoreA simple, fast, selective of a new flow injection analysis method coupled with potentiometric detection was used to determine vitamin B1 in pharmaceutical formulations via the prepared new selective membranes. Two electrodes were constructed for the determination of vitamin B1 based on the ion-pair vitamin B1-phosphotungestic acid (B1-PTA) in a poly (vinyl chloride) supported with a plasticized di-butyl phthalate (DBPH) and di-butyl phosphate (DBP). Applications of these ion selective electrodes for the determination of vitamin B1 in the pharmaceutical preparations for batch and flow injection systems were described. The ion selective membrane exhibited a near-Nernstian slope values 56.88 and 58.53 mV / decade, with the linear dy
... Show MoreThis research investigates solid waste management in Al-Kut City. It included the collection of medical and general solid waste generated in five hospitals different in their specialization and capacity through one week, starting from 03/02/2012. Samples were collected and analyzed periodically to find their generation rate, composition, and physical properties. Analysis results indicated that generation rate ranged between (1102 – 212) kg / bed / day, moisture content and density were (19.0 % - 197 kg/ m3) respectively for medical waste and (41%-255 kg/ m3) respectively for general waste. Theoretically, medical solid waste generated in Al-Kut City (like any other city), affected by capacity, number of patients in a day, and hosp
... Show MoreThe aim of this study is to use style programming goal and technical programming goal fuzzy to study assessing need annual accurately and correctly depending on the data and information about the quantity the actual use of medicines and medical supplies in all hospitals and health institutions during a certain period where they were taking the company public for the marketing of medicines and medical supplies sample for research. Programming model was built goal to this problem, which included (15) variable decision, (19) constraint and two objectives:
1 - rational exchange of budget allocated for medicines and supplies.
2 - ensure that the needs of patients of medicines and supplies needed to improve