This research study Blur groups (Fuzzy Sets) which is the perception of the most modern in the application in various practical and theoretical areas and in various fields of life, was addressed to the fuzzy random variable whose value is not real, but the numbers Millbh because it expresses the mysterious phenomena or uncertain with measurements are not assertive. Fuzzy data were presented for binocular test and analysis of variance method of random Fuzzy variables , where this method depends on a number of assumptions, which is a problem that prevents the use of this method in the case of non-realized.
The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element
... Show MoreAbstract
The current research problem includes a variety of research motivations to serve the private health sector, which is witnessing a great competition from internal and external environments. In this regard, private medical clinics are increasingly seeking to attract and retain customers through the quality of their service offerings represented by health services. Innovative and effective marketing methods to improve performance and stay in competition, by relying on the physical evidence of the product as a component of the marketing mix of services and its role in particular in packaging and supporting the health service with concrete evidence that affects the customer an
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreHigh frequencies of multidrug resistant organisms were observed worldwide in intensive care units which is a warning as to use the only few effective antimicrobials wisely to reduce selective pressure on sensitive strains.
The aim of the current study is to asses the compliance of the currently followed antibiotic prescribing pattern in the intensive care unit in an Iraqi hospital with the international guidelines.A cross-sectional study was done in the intensive care unit (ICU) of the Surgical Specialties Hospital, Medical City in Bagdad from the 30th of November 2011 to the 5th of May 2012.Patients were followed until they were discharged or died to see any change in condition, response to drugs, devices u
... Show MoreObjective(s): To determine the impact of the Electronic Health Information Systems upon medical, medical backing and administrative business fields in Al-Kindy Teaching Hospital and to identify the relationship between such impact and their demographic characteristics of years of employment, place of work, and education. Methodology: A descriptive analytical design is employed through the period of April 25th 2016 to May 28th 2016. A purposive "non- probability" sample of (50) subject is selected. The sample is comprised of (25) medical and medical backing staff and (25) administrative staff who are all
In this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show More