The study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more than 82%. Separation efficiency and excellent selectivity for procaine were ensured using a mixed solution injected into an HPLC technique consisting of a C18 column with a mobile phase mixture of water-acetonitrile (75:25) at pH 3.3. The study of drug control using an imprinted polymer with procaine compound showed that the complete drug release process is faster at pH1 in a maximum period of 80 min. The proposed method was successfully applied on some of the available pharmaceuticals, and it showed high selectivity for the separation of PRO, RE % was < 1.18, and RSD was less than 0.447.
This study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
Gypseous soil is a collapsible soil, which causes large deformations in buildings that are constructed on it. Various methods have been used to minimise this effect, such as replacing the gypseous soil or using soil stabilisation (grouting or soil improvement). This study was carried out on four types of gypseous soils that have different properties and various gypsum contents. The testing was carried out on remoulded samples to evaluate the compressibility of gypseous soil under different conditions. The samples were grouted with acrylate liquid. The relationships between the injection pressure and the radius of flow, between time of injection and radius of flow, and between time and quantity of acrylate liquid are investigated on
... Show MoreSchiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i
Algae have been used in different applications in various fields such as the pharmaceutical industry, environmental treatments, and biotechnology. Studies show that the preparation of nanoparticles by a green synthesis method is a promising solution to many medical and environmental issues. In the current study, the green alga Stigeoclonium attenuatum (Hazen) F.S. Collins 1909 was isolated and identified from the Al-Hillah River (Governorate of Babylon) in the middle of Iraq. The green synthesis by the aqueous extract of algae was used to prepare the nanoflakes of ZnO. Nanoflakes of ZnO are characterized by X-Ray diffraction (XRD) and scanning electron microscope (SEM) with flakes shape and dimensions ranging be
... Show MoreMost dental supplies don't seem to be much of a barrier against germ infiltration. Therefore, the filling must be done with perfect caution and high antimicrobial effectiveness. When dental erosion occurs due to germs that lead to caries, a dental filling is used, creating a small microscopic space between the dental filling and the root end infiltration. This allowed the tooth to be penetrated for the second time, which was the research problem. Adding two compounds to antibacterial fillers (zinc polycarboxylate cement) made them work better: Firstly, was zinc oxide (ZnO) that was made chemically, and secondly, was green ZnO nanoparticles that were made from orange peels and mixed with ZPCC in different amounts. The study was conducte
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases