One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated temperature are first suggested as a numerical model. After that, the suggested numerical model was validated against the experimental tests conducted in this study. The validated numerical model was used to conduct a parametric study to investigate the effects of two important parameters on the structural behavior after being exposed to fire flame. The effect of burning temperatures (500, 600, and 700) oC, as well as the influence of fire duration (1 and 2) hours, were included. The experimental program validation requirement comprised four self-compacted reinforced concrete beams each of the same geometric layout (150x200x1500) mm, reinforcing details, and compressive strength (fc'=50 MPa). Four percentages of (WAPS) were considered (0, 1, 2, and 3)%. The specimens were exposed to a fire flame with a steady-state temperature (500°C), a rising rate compatible with ASTM-E119, a one-hour duration, and a sudden cooling procedure. A static (two-point) load was applied to the burned beams. Through the assessed numerical model, the numerical analysis offered by the WAPS ratio effect was carried out for the reinforced concrete beam under the effect of static load. The findings revealed that the WAPS ratio substantially impacted structural behavior. The numerical model's results were in reasonable agreement with the experimental results. Concerning the fire exposure duration (two hours) at 500 oC, the specimens containing a ratio (3%) of WAPS improved the ultimate load and the ultimate deflection by about (46.63 and 72.24)%, respectively. The highest percentage variation of the absorbed energy at failure load was also detected in the ratio (3%) to be (139.43) %. As for the hardening concrete properties (compressive strength, splitting tensile strength, and modulus of elasticity), the residual strength was (61.06, 48.87, and 32.00)%, respectively. Regarding the steady-state burning temperature (500, 600, and 700)oC for a one-hour duration, the specimens with a ratio of (3%) WAPS improved the ultimate load by about (40.70, 62.00, and 40.76)%, respectively, corresponding to zero percentage of WAPS. The residual compressive strength, splitting tensile strength, and modulus of elasticity were (72.40, 56.12, and 43.78)%, (74.36, 56.50, and 44.79)%, and (45.23, 36.57, and 28.94)%, respectively.
Cantilever beams are used in many crucial applications in machinery and construction. For example, the airplane wing, the microscopic probe for atomic force measurement, the tower crane overhang and twin overhang folding bridge are typical examples of cantilever beams. The current research aims to develop an analytical solution for the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam represented by the natural frequencies was determined under different working surrounding temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical solution results, considering the effect of some beam geometrical dimensions. The developed analytical solution has been verified successfully wi
... Show MoreComputer simulations were carried out to investigate the dependence of the main perturbation parameters (Sun and Moon attractions, solar radiation pressure, atmosphere drag, and geopotential of Earth) on the orbital behavior of satellite. In this simulation, the Cowell method for accelerations technique was adopted, the equation of motion with perturbation was solved by 4th order Runge-Kutta method with step (1/50000) of period to obtain the state vectors for position and velocity. The results of this simulation have been compared with data that available on TLEs (NORD data in two line elements). The results of state vectors for satellites (Cartosat-2B, Gsat-14 an
In this paper we study the effect of adding Zinc Oxide powder (ZnO) at different ratios (10%,20%,30%,40%,50%) as particles and organic dyes rhodamine B(RhB), rohdamine 6G(Rh6G) and eosin(EO) are added at different doping ratios to polystyrene (PS), to form photosensitized(PS/ZnO/dye) composites, for samples were prepared as films by spin method. Photoconductive properties are investigated. For I-V characteristic measurements, the photocurrent (Iph) and dark current (Id) are generally increased in non linear behavior with increasing light intensity and applied voltage for all composites. The photocurrent goes decrease through its maximum value at high white light intensities or high voltage for 2.4*10-
... Show MoreMeasurements of Hall effect properties at different of annealing temperature have been made on polycrystalline Pb0.55S0.45 films were prepared at room temperature by thermal evaporation technique under high vacuum 4*10-5 torr . The thickness of the film was 2?m .The carrier concentration (n) was observed to decrease with increasing the annealing temperature. The Hall measurements showed that the charge carriers are electrons (i.e n-type conduction). From the observed dependence on the temperature, it is found that the Hall mobility (µH), drift velocity ( d) carrier life time ( ), mean free path (?) were increased with increasing annealing temperature
In this study, the relationship between the bare soil temperature with respect to its salinity is presented, the bare soil feature is considered only by eliminating all other land features by classifying the site location by using the support vector machine algorithm, in the same time the salinity index that calculated from the spectral response from the satellite bands is calibrated using empirical salinity value calculated from field soil samples. A 2D probability density function is used to analyze the relationship between the temperature rising from the minimum temperature (from the sunrise time) due to the solar radiation duration tell the time of the satellite capturing the scene image and the calibrated salinity index is presented. T
... Show MorePortland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show MoreThe substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution complet
... Show MoreGas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mix
The main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject.
... Show MoreThis research aims to study the influence of organizational power on the achievement of entrepreneurship for business organizations. It is an analytical study of the views of a sample of managers in the Iraqi Ministry of Education. The research highlights the contribution that can be made from the knowledge of the theory of business organizations in achieving organizational success. The organizational power of the organization contributes to achieving entrepreneurship in the business environment and achieving a competitive position in the work environment. The research dealt with two variables: the first is the independent variable, the organizational power in its dimensions (Expend Power, Structural Power, Prestige Power). And t
... Show More