Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and the period of nano-treatment on the wettability of calcite is examined. We find that nano-treatment alters the wettability significantly i.e. intermediate-wet calcite turns strongly water-wet after treatment (e.g. at 20 MPa and 50 °C, θ = 64° for intermediate-wet calcite, and θ = 28° for nano-treated calcite). Consequently, pre-injection of nanofluids will significantly enhanced the storage potential. It was also found that the permanent shift in wettability after nano-treatment is a function of treatment conditions including temperature, pressure, and treatment duration time and that surfaces treated under high pressure and low temperature yield better wettability alteration efficiency. We point out that the change in wettability is attributed to the changes in surface properties of the nano-treated sample. The results of the study thus depict that nanoparticles can significantly enhance storage potential and de-risk storage projects.
Polymer composites were prepared using epoxy resin (EP) and unsaturated polyester (UPE) as a blend matrices, which were mixed together in different percentages (starting from 90:10) of (epoxy/polyester) respectively, and ending with (50:50) of (epoxy/polyester). The optimum mixing ratio (OMR) of the components was decided upon the results of the impact strength value of these blending ratio, which showed the highest value of (16.3) KJ/m2 for the blending ratio (80:20) of (EP/UPE) respectively.
The blend with (OMR) was chosen to be reinforced with three different weight fractions of reinforcement; the 1st one was reinforced with nano titanium oxide (TiO2) with a weight fraction (2% wt.), the 2nd one was reinforced with both nano (TiO2)
Cloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize
... Show MoreIn-Band Full-Duplex (IBFD) systems have the capability of simultaneously transmitting and receiving signals through the channel and require the same resources as half-duplex systems. Unfortunately, IBFD systems have self-interference (SI) issues that prevent the system from gaining double throughput with respect to half-duplex systems. Therefore, the IBFD system will be more reliable if SI is mitigated more. This contribution will look at SI cancellation in wireless radio and underwater acoustic systems. The reviewed documents cover all types of SI cancellations, including passive, analog, and digital cancellations. In a practical full-duplex system, the SI cancellation for all domains must cancel the SI below the receiver noi
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
In this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show More