The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units. This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized porosity log-log plot reveals the presence of three distinct Hydraulic Flow Units and corresponding rock types within the Jeribe reservoir. These rock types can be identified if known. The reservoir can be divided into three groups of rock types, namely good, moderate, and bad quality. The bad rock type represents a restricted section within the reservoir, while the upper and lower parts predominantly consist of moderate-quality rock types. Conversely, the central section of the reservoir exhibits a good-quality rock type. By utilizing the Flow Zone Indicator principles, this study provides valuable insights into the hydraulic flow behavior and rock types present in the Jeribe reservoir. The proposed permeability model derived from this method can aid in predicting permeability values for uncored wells, contributing to a better understanding of the reservoir's heterogeneity and facilitating reservoir characterization and management decisions.
An innovative two-step noncatalytic esterifcation technique was proposed to synthesize alkyl esters from free fatty acids simulated in waste cooking oil, as a pretreatment process for biodiesel production, without adding any catalyst under normal conditions of pressure and temperature. The efect of methanol:oil molar ratio, reaction time, mixing rate, and reaction temperature were investigated. The results confrmed that the conversion of the reaction was increased when increasing the methanol molar ratio and decreased in prolonged reaction temperature. High conversion (94.545%) was successfully achieved at optimized conditions of 115:1, 65:1 methanol:oil molar ratio in the frst step and second step, respectively, other conditions i
... Show MoreOilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.
Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f
... Show MoreNow that most of the conventional reservoirs are being depleted at a rapid pace, the focus is on unconventional reservoirs like tight gas reservoirs. Due to the heterogeneous nature and low permeability of unconventional reservoirs, they require a huge number of wells to hit all the isolated hydrocarbon zones. Infill drilling is one of the most common and effective methods of increasing the recovery, by reducing the well spacing and increasing the sweep efficiency. However, the problem with drilling such a large number of wells is the determination of the optimum location for each well that ensures minimum interference between wells, and accelerates the recovery from the field. Detail
In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms
our generalization build on using the conditions
This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in .
Objective: The study aimed to evaluate knowledge and practices of nursing staff at the orthopedic units
regarding the existing care of patient with skin traction.
Methodology: The sample consists of (40) nurses, (20) of them from Emergency Teaching Hospital in Duhok
and the other (20) of them from Erbil Teaching Hospital in Erbil from 1st Dec. 2004 to the end of June 2005 in
Kurdistan Region.
Two instruments were constructed to evaluate knowledge and practices. Evaluation of knowledge was done by
using of multiple choice questions composed of (25) questions, and evaluation of practice was done by using the
observational check list which consist of four main category (pre skin traction, during skin traction, post skin
In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.