The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units. This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized porosity log-log plot reveals the presence of three distinct Hydraulic Flow Units and corresponding rock types within the Jeribe reservoir. These rock types can be identified if known. The reservoir can be divided into three groups of rock types, namely good, moderate, and bad quality. The bad rock type represents a restricted section within the reservoir, while the upper and lower parts predominantly consist of moderate-quality rock types. Conversely, the central section of the reservoir exhibits a good-quality rock type. By utilizing the Flow Zone Indicator principles, this study provides valuable insights into the hydraulic flow behavior and rock types present in the Jeribe reservoir. The proposed permeability model derived from this method can aid in predicting permeability values for uncored wells, contributing to a better understanding of the reservoir's heterogeneity and facilitating reservoir characterization and management decisions.
The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recogniti
... Show MoreBackground: Atherosclerosis is well known related to age and certain cardiovascular diseases. Aging is one reason of arteries function deterioration which can cause loss of compliance and plaque accumulation, this effect increases by the presence of certain diseases such as hypertension and diabetes disease. Aim: To investigate the reduction of blood supply to the brain in patients with diabetes and hypertension with age and the role of resistive index in the diagnosis of reduced blood flow. Method: Patients with both diseases diabetic and hypertension were classified according to their age to identify the progression of the disease and factors influencing the carotid artery blood flow. By using ultrasound and standard Doppler techniq
... Show MoreThe aim of this paper is to study the effects of magnetohydrodynamic (MHD) on
flow of field of Oldroyd-B fluid between two side walls parallel to the plate .
The continuity and motion equations, for the problem under consideration are
obtained. It is found that the motion equation contains fraction derivative of
different order and the magnetohydrodynamic (MHD) parameter M .The effect of M
upon the velocity field is analyzed ,many types of fractional models are also
considered through taken different values of the fraction derivative order . This has
been done through plotting the velocity field by using Mathemitca package .
Close form for the stress tensor was obtained in many cases, which have been
studied be
Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along
... Show MoreThe study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show More