The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units. This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized porosity log-log plot reveals the presence of three distinct Hydraulic Flow Units and corresponding rock types within the Jeribe reservoir. These rock types can be identified if known. The reservoir can be divided into three groups of rock types, namely good, moderate, and bad quality. The bad rock type represents a restricted section within the reservoir, while the upper and lower parts predominantly consist of moderate-quality rock types. Conversely, the central section of the reservoir exhibits a good-quality rock type. By utilizing the Flow Zone Indicator principles, this study provides valuable insights into the hydraulic flow behavior and rock types present in the Jeribe reservoir. The proposed permeability model derived from this method can aid in predicting permeability values for uncored wells, contributing to a better understanding of the reservoir's heterogeneity and facilitating reservoir characterization and management decisions.
The unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreUnconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreAtherosclerosis is the most common causes of vascular diseases and it is associated with a restriction in the lumen of blood vessels. So; the study of blood flow in arteries is very important to understand the relation between hemodynamic characteristics of blood flow and the occurrence of atherosclerosis.
looking for the physical factors and correlations that explain the phenomena of existence the atherosclerosis disease in the proximal site of LAD artery in some people rather than others is achieved in this study by analysis data from coronary angiography as well as estimating the blood velocity from coronary angiography scans without having a required data on velocity by using some mathematical equations and physical laws. Fif
... Show MoreThe coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreExcessive water production is a persistent challenge in oil and gas wells, with polymer and gel solutions commonly employed for water control. This study investigates the rheological behaviour of cross-linked polyacrylamide gels and their impact on water shutoff treatment in gas wells. Rheological measurements, coreflooding experiments using Berea sandstone samples, and micromodel flow visualizations were conducted to evaluate gel performance. Results showed that during water injection, the water residual resistance factor ( Frrw ) decreases with increasing flow rates, mainly due to gel shear thinning behaviour and reduced residual gas saturation. Higher polymer concentrations in the gel enhance water permeability reduction. In contrast, un
... Show MoreThe air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and air velocity at the inlet of 5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow
... Show More