A 2D geological model for Mauddud Formation in the Badra oil field is built using Rockworks 16 software. Mauddud Formation produces oil from limestone units; it represents the main reservoir in the Badra oil field. Six wells (BD-1, BD-2, BD-4, BD-5, P-15, and P-19) are selected to build facies and petrophysical (Porosity and Water saturation) models. Wells data are taken from the core and cutting samples and studied through the microscopic. The petrophysical data (effective porosity and water saturation) are derived from computer processes interpretation results that are calculated by using Interactive Petrophysics software. The 2D models are built to illustrate the vertical and horizontal distribution of petrophysical properties between wells of the Badra oil field. The facies model of Mauddud Formation shows the dominance of open marine facies in the upper and middle parts of the formation, whereas mid-ramp facies occupies the lower part. The shoal facies represents approximately continuous units among wells of study. According to the results of petrophysical models, the effective porosity increases towards the wells which occupy a higher structural depth while the water saturation increases toward the wells which occupy the lower structural depths. The hydrocarbons are mainly accumulated in the high structure parts of the Badra field within Mauddud Formation.
In this study, a one-dimensional model represented by Butler-Volmer-Monod (BVM) model was proposed to compute the anode overpotential and current density in a mediator-less MFC system. The system was fueled with various organic loadings of real field petroleum refinery oily sludge to optimize the favorable organic loading for biomass to operate the suggested system. The increase in each organic loading showed higher resistance to electrons transport to the anode represented by ohmic loss. On the contrary, both activation and mass transfer losses exhibited a noticeable decrement upon the increased organic loadings. However, current density was improved throughout all increased loads achieving a maximum current density of 5.2 A/m3
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show MoreIn the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreThis research represents a practical attempt applied to calibrate and verify a hydraulic model for the Blue Nile River. The calibration procedures are performed using the observed data for a previous period and comparing them with the calibration results while verification requirements are achieved with the application of the observed data for another future period and comparing them with the verification results. The study objective covered a relationship of the river terrain with the distance between the assumed points of the dam failures along the river length. The computed model values and the observed data should conform to the theoretical analysis and the overall verification performance of the model by comparing i
... Show MoreThe current study aims to compare between the assessments of the Rush model’s parameters to the missing and completed data in various ways of processing the missing data. To achieve the aim of the present study, the researcher followed the following steps: preparing Philip Carter test for the spatial capacity which consists of (20) items on a group of (250) sixth scientific stage students in the directorates of Baghdad Education at Al–Rusafa (1st, 2nd and 3rd) for the academic year (2018-2019). Then, the researcher relied on a single-parameter model to analyze the data. The researcher used Bilog-mg3 model to check the hypotheses, data and match them with the model. In addition
... Show More