In the present study, multi-walled carbon nanotubes (MWCNTs) with outside diameters of< 8 nm and 20−30 nm were covalently functionalized with β-Alanine using a novel synthesis procedure. The functionalization process was proved successful using Raman spectroscopy, FTIR, and TEM. Utilizing the two-step method with ultrasonication, the MWCNTs treated with β-Alanine (Ala-MWCNTs) with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% were dispersed in distilled water to prepare water-based nanofluids. The aqueous colloidal dispersions of pristine MWCNTs were unstable. While for Ala-MWCNTs and after> 50 days from preparation, higher colloidal stability was obtained up to relative concentration of 0.955 and 0.939 for the 0.075-wt% samples of Ala-MWCNTs < 8 nm and Ala-MWCNTs 20−30 nm, respectively. The measured values of thermal conductivity were in very good agreement with the model of Nan, Birringer, Clarke and Gleiter and increased as temperature, specific surface area (SSA), and weight concentration increased, up to 14.74% for Ala- MWCNTs < 8 nm and 12.29% for Ala-MWCNTs 20−30 nm. The viscosity increased as weight concentration increased, up 25.69% for 0.1-wt% Ala-MWCNTs 20−30 nm, and decreased with the increase in temperature. Since the matching between the measured values of viscosity and the classical models of Batchelor, Brinkman, and Einstein was bad, a correlation was developed and revealed good agreement. The density and specific heat decreased as temperature increased. As weight concentration increased, the density slightly increased up to 0.065% for Ala-MWCNT < 8 nm while the specific heat decreased down to 0.95% for Ala-MWCNTs 20−30 nm, in comparison with water. The equations of (Pak and Cho) and (Xuan and Roetzel) were in good agreement with the measured values of density and specific heat, respectively. The aqueous colloidal dispersions of Ala-MWCNTs that were prepared in this work displayed robust candidature as successful substitutes for the conventional heat transfer fluids in different engineering applications for enhanced thermal performance.
We prepared polythiophene (PTH) with single wall carbon nanotube (SWCNT) nanocomposite thin films for Nitrogen dioxide (NO2) gas sensing applications. Thin films were synthesized via electrochemical polymerization method onto (Indium tin oxide) ITO coated glass substrate of thiophene monomer with magnesium perchlorate and different concentration from SWCNT (0.012 and 0.016) % in the presence130mL of Acetonitrile used. X-ray diffraction (XRD), Field Emission Scanning Electron microscopy (FE-SEM), Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterized these nanocomposite thin films. The response of these nanocomposite for NO2 gas was evaluated via monitoring the change
... Show MoreThe ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c
... Show MoreThis research aims to study the effect of heat on the efficiency of solar cells of neutrons ranging from card to these cells in the case of dark and light before and after irradiation using the neutron source as well as electrical properties have been studied
A simplified theoretical comparison of the hydrogen chloride (HCl) and hydrogen fluoride (HF) chemical lasers is presented by using computer program. The program is able to predict quantitative variations of the laser characteristics as a function of rotational and vibrational quantum number. Lasing is assumed to occur in a Fabry-Perot cavity on vibration-rotation transitions between two vibrational levels of hypothetical diatomic molecule. This study include a comprehensive parametric analysis that indicates that the large rotational constant of HF laser in comparison with HCl laser makes it relatively easy to satisfy the partial inversion criterion. The results of this computer program proved their credibility when compared with th
... Show MoreBackground: Masseter muscle is a jaw closing muscle of the mandible involved in Para functional habits; which include lip and cheek chewing, fingernail biting, and teeth clenching or bruxism which can be classified as awake or sleep bruxism. Patients with sleep bruxism are three to four times more likely to experience jaw pain and limitation of movement than people who do not experience sleep bruxism. The aim of this study is to measure the thickness of the masseter muscle in bruxist subjects and compare it with non-bruxist subjects by using sonography. Materials and Method: Forty Iraqi subjects with age ranged (20-40) divided into two groups according to the presence of bruxism. Clinical examination was made and masseter muscle thickness
... Show MoreBreak in the bond and its impact on the difference of scholars
A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)