داء المشوكات الكيسي (CE) هو مرض وبائي يسبب مرضًا خطيرًا وخسائر اقتصادية في معظم بلدان العالم. MiRNAs هي عامل جيني ضروري لتنظيم الاستجابة المناعية من خلال قدرته على التدخل في التعبير الخلوي ؛ واحد هذه الحوامض النووية الدقيقة -146 أ. هدفت الدراسة الحالية تقييم إذا كان بإمكاننا استخدام microRNA 146a كمؤشر حيوي للكشف عن CEو تحديد العلاقة بين التعبير الجيني microRNA 146a و IL-17 في مرضى CE.حيث اشتملت الدراسة على 50 مريضًا من CE تم إدخالهم إلى المستشفى في بغداد ، العراق و 50 من الأصحاء. تم جمع المصل للفترة من ايلول 2022 إلى حزيران 2023 . تراوحت أعمار العينات بين 20 - 55 سنة. بلغت اعلى نسبة الاصابة بالمشوكات الكيسية عند الاشخاص الذين يعيشون بالمناطق الريفية مقارنة بالذين يعيشون في المدن الحضرية (74.00٪ و 42.00٪) ، وشكلت الرئة العضو الأكثر إصابة (74٪) ، يليها الكبد (18٪) ، ثم الكبد والرئة معًا (8٪). لوحظ بان التعبير الجيني لل miRNA-146a في مرضى CE أعلى بكثير من أعضاء المجموعة الضابطة (4.33 ± 1.01 و 1.00 ± 0.23 على التوالي). هذا كما اظهرت النتائج بان مستوى IL-17 زاد بشكل ملحوظ في امصال المجموعة الضابطة 129.15 ± 4.73 نانوغرام / لتر مقارنة بالمرضى 105.99 ± 5.81 نانوغرام / لتر. الخلاصة: وفقًا للنتائج التي توصلنا إليها ،ارتفاع التعبير الجيني miRNA-146a في مصل مرضى CE يمكن ان يعد عاملا حيويا في تشخيص المشوكات، وهذا الزيادة تؤثر سلبًا بمستويات IL-17 المنخفضة مما يؤثر ويتداخل مع الاستجابة الالتهابية لجهاز المناعة وبالنتيجة يسهم في التسبب في CE.
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreThis case series aims to evaluate patients affected with post COVID‐19 mucormycosis from clinical presentation to surgical and pharmacological treatment to improve the disease prognosis.
This case series was conducted at a specialized surgery hospital in Baghdad Medical City for over 10 months. Fifteen cases who had mild to severe COVID‐19 infections followed by symptoms similar to aggressive periodontitis, such as mobility and bone resorption around the multiple maxillary teeth, were included in this case series.
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
In this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show More