MJ Abbas, AK Hussein, Journal of Physical Education, 2019
This research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.
The inhibitive action of Reactive Red (RR31) dye against corrosion of carbon steel in 1M acetic acid solution has been studied using gravimetric method at temperature ranged (288-318)K. The antibacterial activity for the different concentrations of RR31 dye against different bacterial species was studied. The experimental data indicates that this dye acts as a potential inhibitor for carbon-steel in acetic acid medium and the protection efficiency increase with increasing (RR31) dye. The adsorption of (RR31) dye on the carbon steel surface was found to follow Langmuir adsorption isotherm. Thermodynamic data for the adsorption process such as Gibbs free energy change ∆Gads, enthalpy change ∆Hads, and entropy change ∆Sads were estima
... Show MoreThe present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21
... Show MoreSand dunes are spread in multiple places in the world especially in a desert area as a result of economic development and construction processes, there was a need to study the behavior of sand dunes and make it suitable for construction. This paper aims to study the effect of adding sodium silicate on the cohesion strength of sand dune and its behavior. The results show that the cohesion strength increase as a percentage of sodium silicate increase (addition 8% Sodium silicate show the higher cohesion) and the cohesion between sand dune particles increase excepted when using 10% sodium silicate the cohesion began to decrease. However, the effect of curing time is significant and shows
In view of this work, plasma nitriding was executed on Ti-6Al-4V and the effect of nitriding by using glow discharge with 2 mbar of Ar+N2 gas on corrosion resistance with different nitriding time and studied. The structure properties and the external appearance for alloys were performed with x-ray diffraction and optical microscopic. The investigation of XRD indicates the Ti alloys are polycrystalline with a cubic type (bcc). When the external appearance of the surface indicates was of β+α structure which have been better technical properties on biomedical application. The biocompatibility investigation of nitride alloys in vitro medium containing human body fluid: we showed a layer of hydroxyapatite HAP which might
... Show More
The optimum balance values for different coefficient of spherical aberration (third and fifth degree also focal shift) were studied, the optical system includes different apertures (circle, ellipse, square and triangle) using point spread function (PSF). By using (Marechal) method; the minimum value of mean square of variance in wave front was founded, so we can get the maximum of central intensity according to (Strehl) criterion.
This study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t
... Show More