Electricity consumption for household purposes in urban areas widely affects the general urban consumption compared to other commercial and industrial uses, as household electricity consumption is affected by many factors related to the physical aspects of the residential area such as temperature, housing unit area, and coverage ratio, as well as social and economic factors such as family size and income, to reach the extent of the influence of each of the above factors on the amount of electricity consumed for residential uses, a selected sample of a residential area in the city of Baghdad was studied and a field survey conducted of the characteristics of that sample and the results analyzed and modeled statistically in relation to the amount of electricity consumed for residential units. Results showed that the annual electricity consumption is directly proportional to both the increase in the residential plot area and the increase in the number of residents of the housing unit and the increase in the monthly income of households, while it is inversely proportional to the plot coverage rate. Through the results of the field research, it was possible to build six quantitative models describing the behavior of electricity consumption in relation to the variables covered in the research.
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreSignificant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the
This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreObjective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show MoreThe purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreBackground: Polycystic ovary syndrome (PCOS) has an unknown and complex etiology. It affects 5–10% of women in the reproductive age. Patients are known to have increased ovarian androgen production that is associated with decreased menses, hirsutism, and acne. Urinary tract stones (UTS) are a multifactorial disorder, with age and sex being known risk factors. Many PCOS patients are obese, and links between nephrolithiasis and obesity have been shown previously. Objectives: To identify the relation between PCOS and UTS considering the patients' body mass index (BMI). Methods: This is a cross-sectional study that enrolled 407 women aged 18-40 who attended the gynecology and obstetrics clinic at Al-Elwiya Maternity Teaching Hospital.
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show More