The utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of stiffeners bonded to the composite section (bolt–epoxy or bolt only), and inclusion of corrugated metal sheets were investigated. To obtain the full shear connection between the GFRP I-sections and concrete slabs, two rows of shear connectors in the form of bolts were utilized. These shear connectors were erected to the top flange of the GFRP I-sections to compositely connect between the GFRP I-beams and the concrete slabs as well as the corrugated metal sheets. The strengthening of the shear webs of GFRP I-beams with GFRP T-section stiffeners resulted in an enhancement in the flexural and shear strength. The failure loads in the case of the bolt–epoxy connection for the stiffeners were 8.2% and 10.0% higher than those in the case of bolt only when the concrete compressive strengths were 20.1 MPa and 52.3 MPa, respectively. Moreover, the effect of the concrete compressive strength was vital where the failure loads increased by 79.9% and 77.1% when HSC was used instead of NSC for the cases of bolt–epoxy and bolt only, respectively. The epoxy adhesive used in conjunction with mechanical connectors, specifically bolts, resulted in sufficient composite action and delayed shear failure within the web of the GFRP beam. For the specimens with bolt–epoxy connection, strain levels in the concrete slabs were consistently higher than in the other specimens with bolts alone at the same loading level. The concrete slabs integrated with HSC registered strain levels that were 20.0% and 21.8% greater for bolt–epoxy and bolt-only connections, respectively, when compared to those using normal-strength concrete (NSC). This discrepancy can likely be credited to the enhanced composite interaction between the concrete slabs and the GFRP I-beams. In addition, ABAQUS software (version 6.2) was used to develop FE models to analyze the tested composite beams and provide a parametric study using the verified models.
Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show MoreFor more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreThe behavior investigation of castellated beams with fiber-reinforced lightweight concrete deck slab as a modified choice for composite steel-concrete beams affected by harmonic load is presented in this study. The experimental program involved six fixed-supported castellated beams of 2140mm size. Three types of concrete were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber-Reinforced Aggregate Concrete (LWACF). The specimens were divided into two groups: the first comprised three specimens tested under harmonic load effect of 30Hz operation frequency for 3 days, then the residual strength was determined through static load application. The second group included three specimens ide
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MorePractically, torsion is normally combined with flexure and shear actions. Even though, the behavior of reinforced concrete continuous beams under pure torsion is investigated in this study. It was performed on four RC continuous beams under pure torsion. In order to produce torsional moment on the external supports, an eccentric load was applied at various distances from the longitudinal axis of the RC beams until failure.
Variables considered in this study are absolute vertical displacement of the external supports, torsional moment’s capacity, angle of twist and first cracks occurrences. According to experimental results; when load eccentricity increased from 30cm to 60cm, the absolute vertical displacement i
... Show MoreThis paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh
... Show MoreIn this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MoreFiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and