The utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of stiffeners bonded to the composite section (bolt–epoxy or bolt only), and inclusion of corrugated metal sheets were investigated. To obtain the full shear connection between the GFRP I-sections and concrete slabs, two rows of shear connectors in the form of bolts were utilized. These shear connectors were erected to the top flange of the GFRP I-sections to compositely connect between the GFRP I-beams and the concrete slabs as well as the corrugated metal sheets. The strengthening of the shear webs of GFRP I-beams with GFRP T-section stiffeners resulted in an enhancement in the flexural and shear strength. The failure loads in the case of the bolt–epoxy connection for the stiffeners were 8.2% and 10.0% higher than those in the case of bolt only when the concrete compressive strengths were 20.1 MPa and 52.3 MPa, respectively. Moreover, the effect of the concrete compressive strength was vital where the failure loads increased by 79.9% and 77.1% when HSC was used instead of NSC for the cases of bolt–epoxy and bolt only, respectively. The epoxy adhesive used in conjunction with mechanical connectors, specifically bolts, resulted in sufficient composite action and delayed shear failure within the web of the GFRP beam. For the specimens with bolt–epoxy connection, strain levels in the concrete slabs were consistently higher than in the other specimens with bolts alone at the same loading level. The concrete slabs integrated with HSC registered strain levels that were 20.0% and 21.8% greater for bolt–epoxy and bolt-only connections, respectively, when compared to those using normal-strength concrete (NSC). This discrepancy can likely be credited to the enhanced composite interaction between the concrete slabs and the GFRP I-beams. In addition, ABAQUS software (version 6.2) was used to develop FE models to analyze the tested composite beams and provide a parametric study using the verified models.
In this investigation, Rayleigh–Ritz method is used to calculate the natural frequencies of rectangular isotropic and laminated symmetric and anti-symmetric cross and angle ply composite plate with general elastic supports along its edges. Each of the admissible functions here is composed of a trigonometric function and an arbitrary continuous function that is introduced to ensure the sufficient smoothness of the so-called residual displacement function at the edges. Perhaps more importantly, this study has developed a general approach for deriving a complete set of admissible functions that can be applied to various boundary conditions. Several numerical examples are studied to demonstrate the accuracy and convergence of the current s
... Show MoreThe effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreTest results of six half-scale reinforced concrete flat plates connections with an opening in the vicinity of the column are reported. The test specimens represent a portion of a slab bounded by the lines of contraflexure around the column. The tests were designed to study the effect of openings on the punching shear behavior of the slab-column connections. The test parameters were the location and the size of the openings. One specimen had no opening and the remaining five had various arrangements of openings around the column. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The openings in the specimens were square, with the sides parallel to the sides of the column. Three sizes of ope
... Show MoreBubbled slabs can be exposed to damage or deterioration during its life. Therefore, the solution for strengthening must be provided. For the simulation of this case, the analysis of finite elements was carried out using ABAQUS 2017 software on six simply supported specimens, during which five are voided with 88 bubbles, and the other is solid. The slab specimens with symmetric boundary conditions were of dimensions 3200/570/150 mm. The solid slab and one bubbled slab are deemed references. Each of the other slabs was exposed to; (1) service charge, then unloaded (2) external prestressing and (3) loading to collapse under two line load. The external strengthening was applied using prestressed wire with four approaches, wh
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show More