In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium but increasing the initial concentration would be given higher current efficiency and lower energy consumption. The results established that using a pH value lower than three results in a sharp decrease in the removal efficiency as well as using a pH value higher than seven results in decreasing the removal efficiency. Using a mesh number higher than 30 gave a lower removal efficiency. The best operating conditions were found to be an applied potential of 1.8 V, an initial Cd concentration of 125 ppm, and a pH of 7. Under these operating conditions with the using a stack of stainless with mesh number 30 as a packed bed cathode, a complete removal efficiency of Cd(100%) was obtained at a current efficiency of 83.57% and energy consumption of 0.57 kWh/kg Cd.
Nonlinear diffraction patterns can be obtained by focusing a laser beam through a thin slice of the material. Here, we investigated experimentally the formation of the far field nonlinear diffraction patterns of cw laser beam at 532 nm passing through a quartz cuvette containing multi-wall carbon nanotubes (MWCNT's) suspended in acetone and in DI water at concentrations of 0.030.wt.%, 0.045 wt.%, 0.060 wt.%, and 0.075 wt.%. Our results show that increasing the concentration of both types of suspensions (MWCNTs in acetone and MWCNTs DI water) led to increase in the number of pattern rings which indicates an increase in their nonlinear refractive indices. Moreover, MWCNTs DI water suspension at a concentration of 0.075 wt. % was more effic
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreA Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique, Omar Jihad Banawi*, Raghad
This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreEpithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non‐epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co‐culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenot
A new method for construction ion-selective electrode (ISE) by heating reaction of methyl orange with ammonium reineckate using PVC as plasticizer for determination methyl orange and determination Amitriptyline Hydrochloried drug by formation ion-pair on electrode surface . The characteristics of the electrode and it response as following : internal solution 10-4M , pH (2.5-5) ,temperature (20-30) and response time 2 sec. Calibration response for methyl orange over the concentrationrange 10-3 -10-9 M with R=0.9989 , RSD%=0.1052, D.O.L=0.315X10-9 MEre%=(-0.877- -2.76) , Rec%.=(97.230 -101.711) .