Due to the potential cost saving and minimal temperature stratification, the energy storage based on phase-change materials (PCMs) can be a reliable approach for decoupling energy demand from immediate supply availability. However, due to their high heat resistance, these materials necessitate the introduction of enhancing additives, such as expanded surfaces and fins, to enable their deployment in more widespread thermal and energy storage applications. This study reports on how circular fins with staggered distribution and variable orientations can be employed for addressing the low thermal response rates in a PCM (Paraffin RT-35) triple-tube heat exchanger consisting of two heat-transfer fluids flow in opposites directions through the inner and the outer tubes. Various configurations, dimensions, and orientations of the circular fins at different flow conditions of the heat-transfer fluid were numerically examined and optimized using an experimentally validated computational fluid-dynamic model. The results show that the melting rate, compared with the base case of finless, can be improved by 88% and the heat charging rate by 34%, when the fin orientation is downward–upward along the left side and the right side of the PCM shell. The results also show that there is a benefit if longer fins with smaller thicknesses are adopted in the vertical direction of the storage unit. This benefit helps natural convection to play a greater role, resulting in higher melting rates. Changing the fins’ dimensions from (thickness × length) 2 × 7.071 mm2 to 0.55 × 25.76 mm2 decreases the melting time by 22% and increases the heat charging rate by 9.6%. This study has also confirmed the importance of selecting the suitable values of Reynolds numbers and the inlet temperatures of the heat-transfer fluid for optimizing the melting enhancement potential of circular fins with downward–upward fin orientations.
NiO nanoparticle synthesis by chemical method and characterized by XRD with crystal size 11.72
nm and grain size 13 nm from FESEM image also NiO micro used ,two NiO as an additive to evaluate the
possibility of producing photodegradable polymers, the practical application of solid-phase photocatalytic
degradation of polyvinyl chloride (PVC- NiO composite films) was investigated. PVC has a negative impact
on the environment since its polymer degrades slowly, yet it has a wide range of industrial applications and
the amount used shows no evidence of diminishing use. Thus, a synthesis of modified PVC- NiO micro and
nano has been studied with 0, 50, 100, 150, 200, 250, and 300 (hours) as irradiation time a
A series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading cap
... Show MoreBackground : Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy of upper extremities and Open carpal tunnel release is the most frequent surgical procedure and the gold standard for cases that do not respond to conservative treatment. Aims :This study is used to evaluate the functional outcome of limited palmar mini-incision of carpal tunnel release. This study aims to determine the safety and symptomatic and functional efficacy of median nerve decompression with limited incision in carpal tunnel syndrome surgery. Patients and methods:Carpal tunnel release with a 1.5-2 cm limited palmar incision was performed on 20 patients. Patients were evaluated initially at one month after treatment according to symptom severity
... Show MoreThis article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000–13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain abs
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
Double-layer micro-perforated panels (MPPs) have been studied extensively as sound absorption systems to increase the absorption performance of single-layer MPPs. However, existing proposed models indicate that there is still room for improvement regarding the frequency bands of absorption for the double-layer MPP. This study presents a double-layer MPP formed with two single MPPs with inhomogeneous perforation backed by multiple cavities of varying depths. The theoretical formulation is developed using the electrical equivalent circuit method to calculate the absorption coefficient under a normal incident sound. The simulation results show that the proposed model can produce absorption coefficient with wider absorption bandwidth compared w
... Show More