Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studied and modeled. Results: The results revealed the positive effect of the electrodes design on the studied responses. Conclusion: Under the optimum values of the operating variables (5.675 mA/cm2, 40 min), 85.982% and 84.439% removal efficiencies of oil content and turbidity respectively were obtained and the consumption of energy and electrodes were observed as 4.333kWh/m3 and 0.36 g respectively.
The research aims to reveal the availability of skills to develop the tax assessor when carrying out the tax examination process. The study was conducted in the branches of the General Tax Authority in the province of Baghdad (the General Authority for Taxes, Adhamiya branch, the General Authority for Taxes, Rusafa branch, Al-Bayaa branch, New Baghdad tax branch) was approved The descriptive approach to achieve the research objectives represented by answering the following two questions: 1- What are the necessary skills that should be available in the performance of the tax examiner? 2- Are the skills of developing a tax evaluator available? The two researchers used the closed questionnaire as a tool for their research. The quest
... Show MoreIn this work, we calculate and analyze the photon emission from quark and anti-quark interaction during annihilation process using simple model depending on phenomenology of quantum chromodynamic theory (QCD). The parameters, which include the running strength coupling, temperature of the system and the critical temperature, carry information regarding photon emission and have a significant impact on the photons yield. The emission of photon from strange interaction with anti-strange is large sensitive to decreases or increases there running strength coupling. The photons emission increases with decreases running strength coupling and vice versa. We introduce the influence of critical temperature on the photon emission rate in o
... Show MoreThe characteristics of sulfur nanoparticles were studied by using atomic force microscope (AFM) analysis. The atomic force microscope (AFM) measurements showed that the average size of sulfur nanoparticles synthesized using thiosulfate sodium solution through the extract of cucurbita pepo extra was 93.62 nm. Protecting galvanized steel from corrosion in salt media was achieved by using sulfur nanoparticles in different temperatures. The obtained data of thermodynamic in the presence of sulfur nanoparticles referred to high value as compares to counterpart in the absence of sulfur nanoparticles, the high inhibition efficiency (%IE) and corrosion resistance were at high temperature, the corrosion rate or weig
... Show MorePhotonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreMost intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreSingle Point Incremental Forming (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The sheet part is locally deformed through horizontal slices. The moving locus of forming tool (called as toolpath) in these slices constructed to the finished part was performed by the CNC technology. The toolpath was created directly from CAD model of final product. The forming tool is a Ball-end forming tool, which was moved along the toolpath while the edges of sheet material were clamped rigidly on fixture.
This paper presented an investigation study of thinning distribution of a conical shapes carried out by incremental forming and the validation of finite element method to evaluate the limits of the p
... Show More