Dust storms are typical in arid and semi-arid regions such as the Middle East; the frequency and severity of dust storms have grown dramatically in Iraq in recent years. This paper identifies the dust storm sources in Iraq using remotely sensed data from Meteosat-spinning enhanced visible and infrared imager (SEVIRI) bands. Extracted combined satellite images and simulated frontal dust storm trajectories, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, are used to identify the most influential sources in the Middle East and Iraq. Out of 132 dust storms in Iraq during 2020–2023, the most frequent occurred in the spring and summer. A dust source frequency percentage map (DSFPM) is generated using ArcGIS software. The regions located in Iraq, Saudi Arabia, Syria, and Jordan are the largest dust storm sources. New dust sources are identified in Iraq’s southwestern and western regions, such as Al-Nukhaib, Wadi Hauran, and Sinjar, along with new sources in Saudi Arabia, Jordan, and Syria. The most common sources are concentrated in Iraq (55.31%), mainly in the Tigris and Euphrates basin, western desert, and Al-Jazeera region, followed by Syria (19.55%), Saudi Arabia (12.29%), and Jordan (11.73%). The highest dust storm source frequency in Iraq is found in the Al- Samawa desert’s southern region (27.37%). Also, the highest frequency of dust sources from each country is determined. Knowing the origins and trajectories of dust storms will enhance treatments of these causes and their consequences on the environment and socio-economics of the region. It contributes to the support of specialised regional agencies to mitigate this phenomenon.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreHedera helix L. plant belongs to the family Araliaceae that provide a host of bioactive compounds (mainly saponins) of important biological activities, like spasmolytic, secretolytic, anti-inflammatory, and antibacterial activities. Literature survey revealed that there was no previously study concerning H. helix L. which is cultivated in Iraq, so we decided to carry out this study which include extraction, isolation, purification and identification of biologically important triterpenoid saponin hederacoside C from leaves of H. helix L. Extraction of hederacoside C was carried out using two methods; in the first method maceration was done with methanol 99.8% and in the second method soxhlet extraction wit
... Show MoreIn the early 90s military operations and United Nations Special Commission “UNSCOM” teams have been destroyed the past Iraqi chemical program. Both operations led an extensive number of scattered remnants of contaminated areas. The quantities of hazardous materials, incomplete destructed materials, and toxic chemicals were sealed in two bunkers. Deficiency of appropriate destruction technology led to spreading the contamination around the storage site. This paper aims to introduce the environmental detection of the contamination in the storage site area using geospatial analysis technique. The environmental contamination level of nutrients and major ions such as sulphate (SO4), potassium (K), sodium (Na), magnesi
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreStudied the environment and fish life Qattan in the Euphrates River in central Iraq for the period from September 2002 until 2003 recorded the lowest temperature of the water during the month of January during the month of August ranged salinity ranges between 068