Preferred Language
Articles
/
_hdZaI8BVTCNdQwCm3ZY
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying time led to an increase in carbohydrates, sweetness, and CIE-L*a*b levels, while it led to a decrease in the moisture content in dried banana slices. Therefore, there is a direct relationship between CIE-L*a*b levels and sweetness. On the other hand, the RF and CART algorithms gave the highest prediction accuracy of 86% and 0.8 on the Kappa measure. While the other algorithms (SVM, LDA, KNN) gave a prediction accuracy of 80% and 0.7 on the Kappa measure. In terms of testing statistical significance, the null hypothesis (H0) was accepted because there is no relationship between the metric distributions of the algorithms used.

Scopus Clarivate Crossref
Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Engineering And Sustainable Development
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jun 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Sonic Log to Predict Abnormal Pressure Zones in Selected Oil Wells (Western of Iraq)
...Show More Authors

Two oil wells were tested to find the abnormal pressure zones using sonic log technique. We found that well Abu-Jir-3 and Abu-Jir-5 had an abnormal pressure zones from depth 4340 to 4520 feet and 4200 to 4600 feet, respectively. The maximum difference between obtained results and the field measured results did not exceed 2.4%.
In this paper, the formation pressures were expressed in terms of pressure gradient which sometimes reached up to twice the normal pressure gradient.
Drilling and developing such formations were dangerous and expensive.
The plotted figures showed a clear derivation from the normal trend which confirmed the existence of abnormal pressure zones.

View Publication Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Using Adaptive Neuro Fuzzy Inference System to Predict Rate of Penetration from Dynamic Elastic Properties
...Show More Authors

Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal.  The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 24 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effect of using Project - Based Learning method in development intensive reading skills at middle school students
...Show More Authors

The purpose of this research is to identify the effect of the use of project-based learning in the development of intensive reading skills at middle school students. The experimental design was chosen from one group to suit the nature of the research and its objectives. The research group consisted of 35 students. For the purpose of the research, the following materials and tools were prepared: (List of intensive reading skills, intensive reading skills test, teacher's guide, student book). The results of the study showed that there were statistically significant differences at (0.05) in favor of the post-test performance of intensive reading skills. The statistical analysis also showed that the project-based learning approach has a high

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Babylon University Journal\applied Pure Sciences
Detection of the perfect condition to produce the tannase from Aspergillus niger at different medium
...Show More Authors

Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (13)
Scopus Crossref
Publication Date
Sat Jan 09 2021
Journal Name
Review Of International Geographical Education
E-Learning Applications According To The Levels Of STEM Literacy For Teachers Of Physics At The Secondary Stage
...Show More Authors

E-learning applications according to the levels of enlightenment (STEM Literacy) for physics teachers in the secondary stage. The sample consists of (400) teachers, at a rate of (200) males (50%), and (200)females (50%), distributed over (6) directorates of education in Baghdad governorate on both sides of Rusafa and Karkh. To verify the research goals, the researcher built a scale of e-learning applications according to the levels of STEM Literacy, which consists of (50) items distributed over (5) levels. The face validity of the scale and its stability were verified by extracting the stability coefficient through the internal consistency method “Alf-Cronbach”. The following statistical means were used: Pearson correlation coefficient,

... Show More
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Asian Journal Of Applied Sciences
Comparison between Expert Systems, Machine Learning, and Big Data: An Overview
...Show More Authors

Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.

View Publication
Crossref (2)
Crossref