The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying time led to an increase in carbohydrates, sweetness, and CIE-L*a*b levels, while it led to a decrease in the moisture content in dried banana slices. Therefore, there is a direct relationship between CIE-L*a*b levels and sweetness. On the other hand, the RF and CART algorithms gave the highest prediction accuracy of 86% and 0.8 on the Kappa measure. While the other algorithms (SVM, LDA, KNN) gave a prediction accuracy of 80% and 0.7 on the Kappa measure. In terms of testing statistical significance, the null hypothesis (H0) was accepted because there is no relationship between the metric distributions of the algorithms used.
The study aimed to explore the effectiveness of using rational judgment strategy in teaching science to develop scientific thinking for second-grade students. The researcher utilized the quasi-experimental approach based on (the pre/post designing) of two groups: experimental and control. As for tools: a test of scientific thinking prepared by the researcher that proved its verification of their validity and reliability. The test applied on a random sample of (66) students, divided into two groups: (34) experimental, and (32) control. The results showed that the experimental group outperformed the control group in the post-application of the scientific thinking test, In each skill separately, and in the total skills. The study recommende
... Show MoreFor aspirin estimated, a molecularly imprinted polymer MIP-ASP electrodes were generated by electro-polymerization process, the electrodes were prepared by combining the template (aspirin) with (vinyl acetate (VA), 1-vinylimidizole (VIZ) as a functional monomer and N, N-methylene bisacrylamide (MBAA) as crosslinkers using benzoyl peroxide (BPO) as an initiator. The efficiency of the membrane electrodes was analyzed by differential pulse voltammetry (DPV). Four electrodes were synthesized using two different plasticizers, di-butyl sebacate (DBS), di-octyl phthalate (DOP) in PVC matrix. Scanning electron microscopy (SEM) was used to describe the generated MIP, studying the electrodes properties, the slope, detection limit, and life
... Show MoreThis study aims to identify the degree of Arabic language teachers at the secondary stage possessing the teaching competencies necessary to develop the skills of literary savor among their students from the perception of educational leaders in Bisha Province. To achieve the objectives of the study, the descriptive approach was used by adopting a comprehensive survey method. The study sample consisted of (48) school principals and Arabic language supervisors in Bisha Province who supervise the teaching of Arabic language at the secondary level in Bisha Province. The necessary data was collected using a questionnaire. The results of the study revealed that the evaluation of the study sample for the degree to which Arabic language teachers
... Show MoreAbstract
Social media has thrived recently and public organizations at Thi-Qar governorate across different levels are experimenting with launching government social media (GSM) to facilitating two-way interactions between the government and its citizens. Both scholars and practitioners are focusing on understanding the key success factors related to the create of GSM. This study aimed to identify the key success factors by exploring the formation mechanism of individuals’ continuous usage intention. Through the theoretical perspective of the uses and gratifications theory. We identify the gratification factors that stimulate users’ continuance intention toward GSM. Furthermore, we draw upon the stimulus–organism–
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreAt the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreThis study emphasizes the infinite-boundary integro-differential equation. To examine the approximate solution of the problem, two modified optimization algorithms are proposed based on generalized Laguerre functions. In the first technique, the proposed method is applied to the original problem by approximating the solution using the truncated generalized Laguerre polynomial of the unknown function, optimizing coefficients through error minimization, and transforming the integro-differential equation into an algebraic equation. In contrast, the second approach incorporates a penalty term into the objective function to effectively enforce boundary and integral constraints. This technique reduces the original problem to a mathematical optimi
... Show MoreIn order to take measures in controlling soil erosion it is required to estimate soil loss over area of interest. Soil loss due to soil erosion can be estimated using predictive models such as Universal Soil Loss Equation (USLE). The accuracy of these models depends on parameters that are used in equations. One of the most important parameters in equations used in both of models is (C) factor that represents effects of vegetation and other land covers. Estimating land cover by interpretation of remote sensing imagery involves Normalized Difference Vegetation Index (NDVI), an indicator that shows vegetation cover. The aim of this study is estimate (C) factor values for Part of Baghdad city using NDVI derived from satellite Image of Landsat-7
... Show More