The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying time led to an increase in carbohydrates, sweetness, and CIE-L*a*b levels, while it led to a decrease in the moisture content in dried banana slices. Therefore, there is a direct relationship between CIE-L*a*b levels and sweetness. On the other hand, the RF and CART algorithms gave the highest prediction accuracy of 86% and 0.8 on the Kappa measure. While the other algorithms (SVM, LDA, KNN) gave a prediction accuracy of 80% and 0.7 on the Kappa measure. In terms of testing statistical significance, the null hypothesis (H0) was accepted because there is no relationship between the metric distributions of the algorithms used.
Computer science has evolved to become the basis for evolution and entered into all areas of life where the use of computer has been developed in all scientific, military, commercial and health institutions. In addition, it has been applied in residential and industrial projects due to the high capacity and ability to achieve goals in a shorter time and less effort. In this research, the computer, its branches, and algorithms will be invested in the psychological field. In general, in psychological fields, a questionnaire model is created according to the requirements of the research topic. The model contains many questions that are answered by the individuals of the sample space chosen by the researcher. Often,
... Show MoreIn recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show MoreThe research aimed at identifying the effect of using constructive learning model on academic achievement and learning soccer dribbling Skill in 2nd grade secondary school students. The researcher used the experimental method on (30) secondary school students; 10 selected for pilot study, 20 were divided into two groups. The experimental group followed constructive learning model while the controlling group followed the traditional method. The experimental program lasted for eight weeks with two teaching sessions per week for each group. The data was collected and treated using SPSS to conclude the positive effect of using constructive learning model on developing academic achievement and learning soccer dribbling Skill in 2nd grade seconda
... Show More<p>In the mobile phone system, it is highly desirable to estimate the loss of the track not only to improve performance but also to achieve an accurate estimate of financial feasibility; the inaccurate estimate of track loss either leads to performance degradation or increased cost. Various models have been introduced to accurately estimate the path loss. One of these models is the Okomura / Hata model, which is recommended for estimating path loss in cellular systems that use micro cells. This system is suitable for use in a variety of environments. This study examines the comparison of path loss models for statistical analysis derived from experimental data collected in urban and suburban areas at frequencies of 150-1500 MHz
... Show MoreThe research aimed to identify "the effectiveness of educational-learning design according to the model of brain compatibility in achievement among firstmiddle grade students in mathematics", in schools affiliated with the Second Karkh Directorate of Education. To achieve the goal of research, the following zero hypothesis has been formulated: " There is no statistically significant difference at the semantic level (05.0) between the average scores of experimental group students who will study with design accreditation (educational - learning) according to the brain compatibility model and the grades of control group students who will study in the usual way in the achievement thinking test". The research community, which is represented by
... Show MoreThe Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared
... Show MoreSoil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
The problem of slow learning in primary schools’ pupils is not a local or private one. It is also not related to a certain society other than others or has any relation to a particular culture, it is rather an international problem of global nature. It is one of the well-recognized issues in education field. Additionally, it is regarded as one of the old difficulties to which ancient people gave attention. It is discovered through the process of observing human behaviour and attempting to explain and predict it.
Through the work of the two researchers via frequent visits to primary schools that include special classes for slow learning pupils, in addition to the fact that one of the researcher has a child with slow learning issue, t