The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying time led to an increase in carbohydrates, sweetness, and CIE-L*a*b levels, while it led to a decrease in the moisture content in dried banana slices. Therefore, there is a direct relationship between CIE-L*a*b levels and sweetness. On the other hand, the RF and CART algorithms gave the highest prediction accuracy of 86% and 0.8 on the Kappa measure. While the other algorithms (SVM, LDA, KNN) gave a prediction accuracy of 80% and 0.7 on the Kappa measure. In terms of testing statistical significance, the null hypothesis (H0) was accepted because there is no relationship between the metric distributions of the algorithms used.
Background: despite the rise in the incidence of renal cell carcinoma attributed to availability of medical imaging, a considerable decline in mortality is an association. Morbidity-wise, the shift from radical nephrectomy to partial nephrectomy is the trend for now. Multiple scoring systems have been introduced over the past decades to help surgeons choose between radical and partial nephrectomy. One commonly used system is the RENAL nephrometry score that was first introduced by Kutikov and Uzzo in 2009.
Objective: to evaluate the role of RENAL nephrometry scoring system in predicting the surgical technique to use to resect renal masses and associated perioperative outcomes.
... Show MoreAbstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThe way used to estimate the fuzzy reliability differs according to the nature of the information of failure time which has been dealt in this research.The information of failure times has no probable distribution to explain it , in addition it has fuzzy quality.The research includes fuzzy reliability estimation of three periods ,the first one from 1986 to 2013,the second one from 2013 to 2033 while the third one from 2033 to 2066 .Four failure time have been chosen to identify the membership function of fuzzy trapezoid represented in the pervious years after taking in consideration the estimation of most researchers, proffional geologists and the technician who is incharge of maintaining of Mosul Dam project. B
... Show MoreThe time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound
The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.
Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used
... Show MoreHot-wire cutting is one of the important, non-traditional thermomechanical way to cut polymer, usually expanded foam and extruded foam, in low volume manufacturing. The study and analysis of Hot-Wire cutting parameters play an important role to enhance the quality and accuracy of the process and products. The effects on the surface have been investigated by using experimental tests designed according to the Taguchi orthogonal array (OA). In this study, four parameters with five levels for each parameter have been used: [temperature of wire (A) (100, 120, 130, 150, 160) °C], [diameter of wire (B) (0.3,0.4,0.5,0.7,0.8) mm], [velocity of cutting (C) (200, 300,400,500,600) mm/min], [and density of foam (D) (0.01,0.0
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show More