The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying time led to an increase in carbohydrates, sweetness, and CIE-L*a*b levels, while it led to a decrease in the moisture content in dried banana slices. Therefore, there is a direct relationship between CIE-L*a*b levels and sweetness. On the other hand, the RF and CART algorithms gave the highest prediction accuracy of 86% and 0.8 on the Kappa measure. While the other algorithms (SVM, LDA, KNN) gave a prediction accuracy of 80% and 0.7 on the Kappa measure. In terms of testing statistical significance, the null hypothesis (H0) was accepted because there is no relationship between the metric distributions of the algorithms used.
The materials of soil were affected by multi reasons; such as human activities, floods, tidal waves, ... etc. The change of the soil contents could be measured through different indexes; such as electric conductivities, salinity, concentration of the heavy elements, and concentration of essential elements ... etc. The land cover is affected by natural influences, like tidal energy, which plays a negative role in the salinization of land adjacent to the coasts, causing a problem for soils in all its details represented in changing of the dissolved elements in soil. One of the most important natural factors that cause soil salinity is human activity in all its forms, and one of the most important causes of salinity is the phenomenon o
... Show MoreThe present research deals with studying the formal variations for the Quranic calligraphy at the beginning of Islam , as being regarded from the original Arabic calligraphies which were developed later till they became as they are now, where the calligraphers in pushing for simulating these original calligraphies and knowing the methods of their writing by the calligraphers at that time.That helped in enriching and developing the aesthetic and designing valuesFor these calligraphies, as being calligraphic achievements represent transmission resulted from the objective, aesthetic and indicative vision in producing the verses according to a certain form. This has a clear impact in tendency to the technical, aesthetic and expressing develo
... Show MoreThe current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen
... Show MoreThis study aims to show the level of organizational fairness at Hawija Technical Institute ,from the point view of the faculty ,and the degree of their performance, and the nature of the relationship between organizational fairness and their performance.
The researchers accomplish and develop a questionnaire on Likert a three - dimensional scale to de applied on a samp
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
The main objective of this study is to describe the preparation of topographic maps using the Surfer software. A total of 159 regularly distributed Ground Control Points (GCPs) were collected with the use of the Differential Global Positioning System (DGPS). Seven methods (Contour Map, Post Map, 3D Surface Map, 3D Wireframe Maps, Grid Vector-1 Map, Color Relief Map, and Shaded Relief Maps) at the Surfer environment were used to prepare the topographic maps at the Mukhtar Village near the Al-Fallujah City. Contour lines with other features were superimposed on the DEM layer, which refers to the topography of the terrain inside this study area. The accuracy of the database's results was estimated, essential maps were given, and the re
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show More