In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreIn this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
in this paper sufficient conditions of oscillation of all of nonlinear second order neutral differential eqiation and sifficient conditions for nonoscillatory soloitions to onverage to zero are obtained
For many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreThe aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.
The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.