In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreFractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were u
... Show MoreThis work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show MoreLevofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreThe estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreIn the current paper, the effect of fear in three species Beddington–DeAngelis food chain model is investigated. A three species food chain model incorporating Beddington-DeAngelis functional response is proposed, where the growth rate in the first and second level decreases due to existence of predator in the upper level. The existence, uniqueness and boundedness of the solution of the model are studied. All the possible equilibrium points are determined. The local as well as global stability of the system are investigated. The persistence conditions of the system are established. The local bifurcation analysis of the system is carried out. Finally, numerical simulations are used t
The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show Morein this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreIn this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.