Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) network with thickness 4μm was made by the vacuum filtration from suspension (FFS) method. The morphology, structure and optical properties of the MWCNTs film were characterized by SEM and UV-Vis. spectra techniques. The SEM images reflected highly ordered network in the form of ropes or bundles with close-packing which looks like spaghetti. The absorbance spectrum revealed that the network has a good absorbance in the UV-Vis. region. The gas sensor system was used to test the MWCNT-OH network to detect NH3gas at room temperature. The resistance of the sensor was increased when exposed to the NH3gas. The sensitivities of the network w
... Show MoreAbstract: Two different shapes of offset optical fiber was studied based on coreless fiber for refractive index (RI)/concentration (con.) measurement, and compare them. These shapes are U and S-shapes, both shapes structures were formed by one segment of coreless fiber (CF) was joined between two single mode (SMF) lead in /lead out with the same displacement (12.268µm) at both sides, the results shows the high sensitive was achieved in a novel S-shape equal 98.768nm/RIU, to our knowledge, no one has ever mentioned or experienced it, it’s the best shape rather than the U-shape which equal 85.628nm/RIU. In this research, it was proved that the offset form has a significant effect on the sensitivity of the sensor. Addi
... Show MoreSingle mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.
The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreIn this paper, turbidimetric and reversed-phase ultra-fast liquid chromatography (UFLC) methods were described for the quantitative determination of ephedrine hydrochloride in pharmaceutical injections form. The first method is based on measuring the turbidimetric values for the formed yellowish white precipitate in suspension status in order to determine the ephedrine hydrochloride concentration. The suspended substance is formed as a result of the reaction of ephedrine hydrochloride with phosphomolybdic acid which was used as a reagent. The physical and chemical characteristics of the complex were investigated. The calibration graphs of ephedrine were established by turbidity method. While the second method (UFLC) was conducted using the
... Show MoreEnergy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show More