Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.
Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show MoreZiziphora persica Bunge is recorded as a new Study in Iraq. This species has been collected from Jabal Sinjar in Nineveh province in the north western part of Iraq. The morphological characters, habitat and geographical distribution of the species with a key to Ziziphora L. species in Iraq have been provided.
Aniera desert/cola was found new to science and to the Iraqi fauna. The description was
mainly based on external features and male genit
the pursue of social systems history present to us solid evidence that the collapse of that systems be caused by either the stagnancy aftermath maturity or unreal intellectual foundation which lead to sudden collapse, while the capitalism can avoided that intellectual damages due to its dynamic system with appropriate auto adaptation mechanism and use it excellently in the right time.
The globalization had excrete (as one of the capitalism adaptation mechanism) its own targets and its methods in framework of multinationals corporations which consist with capitalism states that employed the international organizations to reconstruction the global economy to serve such targets. So the glob
... Show MoreA new series polymers was synthesized from reaction starting material Bisacodyl A or [(2-Pyridinylmethylene) di-4, 1-phenylene di acetate] with hydrogen bromide, then the products were polymerized by addition polymerization from used adipoyl and glutaroyl chloride. The structure of these compounds was characterized by FT-IR, melting points, TLC, X-Ray, DSC and 1H-NMR for starting material. These compounds were also screened for their antibacterial activists?
The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreRotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, and other rotational operational principal including gears. The work emphasises the discussion of different types of excitations elements, such as mass weight, magnetic force, gravity force, centrifugal force, gears teeth, and impact force, to show their effect
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More