A simple, fast, inexpensive and sensitive method has been proposed to screen and optimize experimental factors that effecting the determination of phenylephrine hydrochloride (PHE.HCl) in pure and pharmaceutical formulations. The method is based on the development of brown-colored charge transfer (CT) complex with p-Bromanil (p-Br) in an alkaline medium (pH=9) with 1.07 min after heating at 80 °C. ‘Design of Experiments’ (DOE) employing ‘Central Composite Face Centered Design’ (CCF) and ‘Response Surface Methodology’ (RSM) were applied as an improvement to traditional ‘One Variable at Time’ (OVAT) approach to evaluate the effects of variations in selected factors (volume of 5×10-3 M p-Br, heating time, and temperature) on the formation of the colored complex Y (absorbance) as graphical interpretation for robustness. The product was spectrophotometrically quantified at 395 nm. Beer’s law is obeyed in the concentration range of 5-20 μg. mL−1 with detection limit of 0.4191 μg. mL−1 . The molar absorptivity and Sandell’s sensitivity were found to be 6.07×103 L.mol−1 .cm−1 and 0.03356 μg.cm−2 respectively and the resulting color was stable for more than 1h. Applications of the recommended method to (PHE.HCl) pharmaceutical formulations was achieved with regard to accuracy and precision.
Two simple methods spectrophotometric were suggested for the determination of Cefixime (CFX) in pure form and pharmaceutical preparation. The first method is based without cloud point (CPE) on diazotization of the Cefixime drug by sodium nitrite at 5Cº followed by coupling with ortho nitro phenol in basic medium to form orange colour. The product was stabilized and measured 400 nm. Beer’s law was obeyed in the concentration range of (10-160) μg∙mL-1 Sandell’s sensitivity was 0.0888μg∙cm-1, the detection limit was 0.07896μg∙mL-1, and the limit of Quantitation was 0.085389μg∙mL-1.The second method was cloud point extraction (CPE) with using Trtion X-114 as surfactant. Beer
... Show MoreA simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreA simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show MoreA simple, cheap, fast, accurate, Safety and sensitive spectrophotometric method for the determination of sulfamethaxazole (SFMx), in pure form and pharmaceutical dosage forms. has been described The Method is based on the diazotization of the drug by sodium nitrite in acidic medium at 5Cº followed by coupling with salbutamol sulphate (SBS) drug to form orange color the product was stabilized and measured at 452 nm Beer’s law is obeyed in the concentration range of 2.5-87.5 ?g ml-1 with molar absorptivity of 2.5x104 L mole-1 cm-1. All variables including the reagent concentration, reaction time, color stability period, and sulfamethaxazole /salbutamol ratio were studied in order to optimize the reaction conditions. No interferences were
... Show MoreSimple, precise and economic batch and flow injection analysis (FIA)-spectrophotometric methods have been established for simultaneous determination of salbutamol sulfate (SLB) in bulk powder and pharmaceutical forms. Both methods based on diazotization coupling reaction of SLB with another drug compound (sulfadimidine) as a safe and green diazotization agent in alkaline medium. At 444 nm, the maximum absorption of the orange azo-dye product was observed. A thorough investigation of all chemical and physical factors was conducted for batch and FIA procedures to achieve high sensitivity. Under the optimized experimental variables, SLB obeys Beer’s law in the concentration range of 0.25-4 and 10-100 μg/mL with limits of detection o
... Show More