Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of the ISMC in the motor system response. Secondly, the bidirectional adaptive law of the switching gain is proposed to mitigate the chattering. In the proposed bidirectional adaptive law, the switching gain varies depending on the system uncertainties, providing the high switching gain initially and then moving to the lowest value when sliding mode is achieved. As a result, not only the overestimation issues of monotonically adaptive law are resolved, but also the prior information of the disturbance upper bound is no longer required. Thirdly, by using the Lyapunov theorem, the stability of the controlled servo system is mathematically proved. Finally, simulation tests are conducted to confirm the superiority of tracking and robustness of the proposed control algorithm over existing control algorithms in terms of position-tracking responses and chattering reduction.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
In this study, a mathematical model for the kinetics of solute transport in liquid membrane systems (LMSs) has been formulated. This model merged the mechanisms of consecutive and reversible processes with a “semi-derived” diffusion expression, resulting in equations that describe solute concentrations in the three sections (donor, acceptor and membrane). These equations have been refined into linear forms, which are satisfying in the special conditions for simplification obtaining the important kinetic constants of the process experimentally.
This work is a trial to ensure the absolute security in any quantum cryptography (QC) protocol via building an effective hardware for satisfying the single-photon must requirement by controlling the value of mean photon number. This was approximately achieved by building a driving circuit that provide very short pulses (≈ 10 ns) for laser diode -LD- with output power of (0.7-0.99mW) using the available electronic components in local markets. These short pulses enable getting faint laser pulses that were further attenuated to reach mean photon number equal to 0.08 or less.
In wireless broadband communications using single-carrier interleave division multiple access (SC-IDMA) systems, efficient multiuser detection (MUD) classes that make use of joint hybrid decision feedback equalization (HDFE)/ frequency decision-feedback equalization (FDFE) and interference cancellation (IC) techniques, are proposed in conjunction with channel coding to deal with several users accessing the multipath fading channels. In FDFE-IDMA, the feedforward (FF) and feedback (FB) filtering operations of FDFE, which use to remove intersymbol interference (ISI), are implemented by Fast Fourier Transforms (FFTs), while in HDFE-IDMA the only FF filter is implemented by FFTs. Further, the parameters involved in the FDFE/
... Show MoreThis article explores the process of VGI collection by assessing the relative usability and accuracy of a range of different methods (Smartphone GPS, Tablet, and analogue maps) for data collection amongst different demographic and educational groups, and in different geographical contexts. Assessments are made of positional accuracy, completeness, and data collectors’ experiences with reference to the official cadastral data and the administration system in a case-study region of Iraq. Ownership data was validated by crowd agreement. The result shows that successful VGI projects have access to varying data collection methods.
There are many studies dealt with handoff management in mobile communication systems and some of these studies presented handoff schemes to manage this important process in cellular network. All previous schemes used relative signal strength (RSS) measurements. In this work, a new proposed handoff scheme had been presented depending not only on the RSS measurements but also used the threshold distance and neighboring BSS power margins in order to improve the handoff management process. We submitted here a threshold RSS as a condition to make a handoff when a mobile station moves from one cell to another this at first, then we submitted also a specified margin between the current received signal and the ongoing BS's received signal must be s
... Show Morethe electron correlation effect for inter-shell can be described by evaluating the fermi hole and partial fermi hole for Li atom comparing with Be+ and B+2 ions
This paper presents an approach to license plate localization and recognition. A proposed method is designed to control the opening of door gate based on the recognition of the license plates number in Iraq. In general the system consists of four stages; Image capturing, License plate cropping, character segmentation and character recognition. In the first stage, the vehicle photo is taken from standard camera placed on the door gate with a specific distance from the front of vehicle to be processed by our system. Then, the detection method searches for the matching of the license plate in the image with a standard plate. The segmentation stage is performed by is using edge detection. Then character recognition, done by comparing with templ
... Show MoreThis paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem. The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.