One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our cameras system to capture the images and upload them to the Amazon Simple Storage Service (AWS S3) cloud. Then two detectors were running, Haar cascade and multitask cascaded convolutional neural networks (MTCNN), at the Amazon Elastic Compute (AWS EC2) cloud, after that the output results of these two detectors are compared using accuracy and execution time. Then the classified non-permission images are uploaded to the AWS S3 cloud. The validation accuracy of the offline augmentation face detection classification model reached 98.81%, and the loss and mean square error were decreased to 0.0176 and 0.0064, respectively. The execution time of all AWS cloud systems for one image when using Haar cascade and MTCNN detectors reached three and seven seconds, respectively.
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreThe futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individu
... Show MoreVisible light communication (VLC) is an upcoming wireless technology for next-generation communication for high-speed data transmission. It has the potential for capacity enhancement due to its characteristic large bandwidth. Concerning signal processing and suitable transceiver design for the VLC application, an amplification-based optical transceiver is proposed in this article. The transmitter consists of a driver and laser diode as the light source, while the receiver contains a photodiode and signal amplifying circuit. The design model is proposed for its simplicity in replacing the trans-impedance and transconductance circuits of the conventional modules by a simple amplification circuit and interface converter. Th
... Show MoreMetaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char
... Show Moreنتيجة للتطورات الأخيرة في أبحاث الطرق السريعة بالإضافة إلى زيادة استخدام المركبات، كان هناك اهتمام كبير بنظام النقل الذكي الأكثر حداثة وفعالية ودقة (ITS) في مجال رؤية الكمبيوتر أو معالجة الصور الرقمية، يلعب تحديد كائنات معينة في صورة دورًا مهمًا في إنشاء صورة شاملة. هناك تحدٍ مرتبط بالتعرف على لوحة ترخيص السيارة (VLPR) بسبب الاختلاف في وجهة النظر، والتنسيقات المتعددة، وظروف الإضاءة غير الموحدة في وقت الحصول
... Show MoreWireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show More