It is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simulation in order to validate the analytical results.
Through this research, We have tried to evaluate the health programs and their effectiveness in improving the health situation through a study of the health institutions reality in Baghdad to identify the main reasons that affect the increase in maternal mortality by using two regression models, "Poisson's Regression Model" and "Hierarchical Poisson's Regression Model". And the study of that indicator (deaths) was through a comparison between the estimation methods of the used models. The "Maximum Likelihood" method was used to estimate the "Poisson's Regression Model"; whereas the "Full Maximum Likelihood" method were used for the "Hierarchical Poisson's Regression Model
... Show MoreWith increased climate change pressures likely to influence harmful algal blooms, exposure to microcystin, a known hepatotoxin and a byproduct of cyanobacterial blooms can be a risk factor for NAFLD associated comorbidities. Using both
Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show MoreProstate cancer (PC), accounts for more than one-fourth of all cancer diagnoses, and the most frequently diagnosed cancer among men in 2022. The immunoglobulin (IG) Program death ligand-1(PD-1) cell surface receptor is predominantly expressed on the surface of many cells. The purpose of this study was to demonstrate the relationship between Program death ligand expression and some aggressive features of prostate cancer including perineural invasion, vascular invasion and necrosis. Thirty cases of prostate cancer with age range from 60 to 80 year old and 30 cases of normal prostate tissue with age under 25 year old were separated into two groups in a retrospective case-control
... Show MoreThis growing interest of the international scientific specialized commissions is due to the role that the audit committee can play, as one of companies’ governance tools, to increase the accuracy and transparency of the financial information disclosed by the companies, through its oversight role on the process of preparing financial reports, its supervision on the internal audit function within the companies, and supporting its independency, as well as coordinating the efforts between the internal control unites and the external auditor represented by the (Board of Supreme Audit) to clear the observations and irregularities in order to reduce the fraud cases.
This research was built on an applied sample of audit committee works
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More