Azo-Schiff base compounds (L1 and L2) have been synthesized from the reaction of m-hydroxy benzoic acid with 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylamine and with 3-[2-(1H-indol-3-yl)-ethylimino]-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-4-ylamine. The free ligands and their complexes were characterized based on elemental analysis, determination of metal, molar conductivity, (1H, 13C) NMR, UV–vis, FT-IR, mass spectra and thermal analysis (TGA). The molar conductance data revealed that all the complexes are non-electrolytes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1). Moreover, the thermodynamic activation parameters, such as DE*, DH*, DS*, DG*and K are calculated from the TGA curves using Coats–Redfern method. Hyper Chem-6 program has been used to predict the structural geometries of compounds in gas phase. The heat of formation (DHf) and binding energy (DEb) at 298 K for the free ligands and their vanadyl complexes were calculated by PM3 method. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa).
Schiff base N,N'-Bis-(4-dimethylamino-benzylidene)-benzene-1,4-diamine has been synthesized from 4-dimethylaminobenzenaldehyde and benzene-1,4-diamine. The structure of Schiff base was obtained by (C.H.N.) microanalysis, Mass, 1HNMR, FT-IR and UV-Vis spectral methods and thermal analysis. Metal mixed ligand complexes of some metal(II) salts with Schiff base ligand and anthranilic acid were prepared in the molar ratio (1:2:2), (Metal):(SBL)2:(Anthra)2, (SBL)= Schiff base ligand, (Anthra) =anthranilic acid and Metal= Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The thermal behaviour (TGA) of the complexes was studied. The prepared complexes identified by using mass, thermal analysis, FT.IR and UV-Vis spectrum methods, on otherwise flame
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe
... Show More2-(2-amino-5-nitro-phenylazo) -phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis, 1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Nd+3,Cd+3,Dy+3 and Er+3at aqueous ethanol for a 1:2 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic absorption,(C.H.N) Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds have been studied obey the ratio of mole and continuous variance manners, Beer's law yielded up a concentration rate (1×10-4 - 3×10-4M) .
... Show More2-(2-amino-5-nitro-phenylazo),-phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis,1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Rh+3 and La+3ataqueous ethanol for a 1:3 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic, absorption,(C.H.N),Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds, have been studied, obey the ratio of mole and continuous, variance, manners, Beer's law, yielded up a concentration, rate (1×10-4- 3×10-4M),. High
... Show More6-(2-benzathiazolyl azo),-3,5-dimethylphenol was formed by grouping the 2- benzothiazole diazonium chloride with 3,5-dimethylphenol. Azo ligand(L) was resolved on the origin by 1H and 13CNMR, FTIR and UV-V is spectral analysis. Complexation of tridentate ligand (L) with Co2+, Ni2+, Cu2+ and Zn2+ in aqueous of ethyl alcohol with a 1:2 metal:ligand, and at ideal pH.. The formation of metal chelates are assigned using flame atomic, absorption, FTIR, and UV-Vis spectral analysis, other than conductivity and magnetic estates. The nature of the metal chelates were carried out by mole ratio and continuous, variation mechanism, Beer's law, followed the rate (0.0001 - 3×0.0001 M) concentration., High molar, absorptivity, for the complex solutions w
... Show MoreNew Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N, N'E, N, N'E)-N, N'-(cyclohexane-1,3-diylidene)bis(4- fluor
... Show MoreThe aim of the work is the synthesis and characterization of the tridentate Schiff base (HL) containing (N and O) as donor atoms type (ONO). The ligand is: (HL) phenyl 2-(2-hydroxybenzylidenamino)benzoate This ligand was prepared by the reaction of (phenyl 2-aminobenzoate) with salicylaldehyde under reflux in ethanol and few drops of glacial acetic acid which gave the ligand (HL). The prepared ligand was characterized by (FT IR,UV–Vis) spectroscopy, Elemental analysis of carbon, hydrogen and nitrogen (C.H.N.) and melting point. The ligand was reacted with some metal ions under reflux in ethanol with (1 metal :2 ligand )mole ratio which gave complexes of the general formula: Pr III , Cr and III La III [M(L)2]Cl , M = Products were found to
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [dipotassium sodium7-((E)-2-(2-((Z)-1-carboxylatoethylideneamino)thiazol-4-yl)-2 (carboxylatemethoxyimino) acet amido)-8-oxo-3-vinyl-5- thia-1-azabicyclo[4.2.0] oct-2- ene-2- carboxylate] [Nak2L], from the reaction of cefixime with sodium pyruvet to produce the ligand [Nak2L], the reaction was carried out in methanol as a solvent under reflux. The prepared ligand [Nak2L] which was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [Nak2L] was used as a primary ligand while 8-hydroxy quinoline [Q] was used as a secondary ligand with metal ion M(?).Where M(?) =
... Show MoreSynthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
A new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Fe(III) have been synthesized from the Schiff base (L1) and (L2) derived from Semicarbazide hydro chloride and 4-chlorobenzaldehyde or 4-bromobenzaldehyde. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conductivity, IR, UV-Vis. and 1H NMR spectral studies. The data show that the complexes have composition of [M(L)2](NO3)2 and [Fe(L)2 (NO3)2](NO3) where the M=Co(II),Ni(II) and Cu(II) ;L=L1and L2 type. The magnetic susceptibility and UV-Vis spectral data of the complexes suggest a square planer geometry for Co(II) and Cu(II) but Fe(III) octahedral geometry and Ni(II) tetrahedral geometry around the central metal i
... Show More