Azo-Schiff base compounds (L1 and L2) have been synthesized from the reaction of m-hydroxy benzoic acid with 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylamine and with 3-[2-(1H-indol-3-yl)-ethylimino]-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-4-ylamine. The free ligands and their complexes were characterized based on elemental analysis, determination of metal, molar conductivity, (1H, 13C) NMR, UV–vis, FT-IR, mass spectra and thermal analysis (TGA). The molar conductance data revealed that all the complexes are non-electrolytes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1). Moreover, the thermodynamic activation parameters, such as DE*, DH*, DS*, DG*and K are calculated from the TGA curves using Coats–Redfern method. Hyper Chem-6 program has been used to predict the structural geometries of compounds in gas phase. The heat of formation (DHf) and binding energy (DEb) at 298 K for the free ligands and their vanadyl complexes were calculated by PM3 method. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa).
Mixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding
In this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.
The Mannich base ligand was synthesized in an ethanol medium through a condensation reaction of 2-mercaptobenzimidazole and ciprofloxacin at room temperature. Subsequently, several metal complexes of this ligand were prepared. To characterize both the base ligand and the metal complexes, various techniques were employed, including elemental analysis, FT-IR spectroscopy, UV-Vis spectroscopy, molar conductivity measurements, magnetic moment determination, and melting point analysis. The results were shown that the metal complexes formed have the formula [Cr(L)2Cl2] Cl.H2O and [Rh(L)2(H2O)2] Cl3.H2O, where L= mannich base ligand. Based on spectroscopic analytical, coordination with metal ions involves the 'N' donor atom of mannich base
... Show MoreIn this research we prepared shiff bases unilateral claw( benzyl imine aniline ) and Bilateral claw ( benzayal-2-imine phenol ) in high purity reach to 98% , which it's prepared from aromatic amine with aldehydes, it's solid,thermosetting, not dissolved in water in general. Diagnosed prepared article by using infra red spectroscopy (IR) which shows azomethen grop at 1640cm-1 At this diagnosis we suggest tetra headral mechanism in this Circumstances For a reaction.
In this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreA series of new imides compounds[1-4] were synthesized from reaction of tetrachlorophthalic anhydride or nitro phthalic anhydride or malic anhydride or Succinic anhydride with 4-amino benzene thiol under fusion conditions. Chloroacetic acid has been added after compounds [1-4] reacted with distilled H2O and Na2CO3, producing compounds [5-8]. In benzene, compounds [5-8] also interacted with the thionyl chloride to produce [9-12]. Poly (vinyl alcohol) was chemically modified by reacting PVA with compounds [9-12] and dimethyl formamide to produce compounds [13-16]. Iron oxide nanoparticles (IONPs) are mixed with modified PVA [13-16] to create nanocomposites [17-20]. Spectral and analytical data from synthesized compounds, such as 1H-NMR, FTI
... Show MoreAlmost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreThe development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show More