Porous silicon was prepared by using electrochemical etching process. The structure, electrical, and photoelectrical properties had been performed. Scanning Electron Microscope (SEM) observations of porous silicon layers were obtained before and after rapid thermal oxidation process. The rapid thermal oxidation process did not modify the morphology of porous layers. The unique observation was the pore size decreased after oxidation; pore number and shape were conserved. The wall size which separated between pore was increased after oxidation and that effected on charge transport mechanism of PS
Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreIndium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreHydrothermal technology has many advantages compared to other growth methods such as the availability of their simple equipment,catalyst-free growth,Environmental friendliness, less dangerous environmental, and low costs. Combine spinning method technology with Hydrothermal could improve the structural of ZnO NS by increasing the formation of ZnO NS due to influence of heat annealed treatments on the structure of ZnO NS. ZnONano-Sheets (NS)were prepared to employ hydrothermal process utilizing zinc acetate, that has the chemical composition (Zn (CH3CO2)2.2H2O),as a precursor. After preparing the material, it is deposited in two methods, the first being disti
... Show MoreOne hundred and eighty five urine samples were collected eight isolates (4.3%) were obtained and diagnosed as Staphylococcus aureus. Among 8 isolates, 5 (62.5%) S. aureus isolates were found to be enterotoxigenic, most of isolates produced at least two types of Staphylococcal enterotoxins (SEs). The production of enterotoxins in the presence or absence of Thymol extracts (aqueous and alcoholic) were estimated using a reversed passive latex agglutination (SET-RPLA) kit. The extracts reduced enterotoxin production compared with the control. Enterotoxin inhibition was observed for enterotoxin C production at minimal inhibitory concentrations (MIC) at 400 µg/ml, whereas production of enterotoxins A, B, and
... Show MoreThe natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in
... Show MoreThe objective of the study to develop an amorphous solid dispersion for poorly soluble raltegravir by hot melt extrusion (HME) technique. A novel solubility improving agent plasdone s630 was utilized. The HME raltegravir was formulated into tablet by direct compression method. The prepared tablets were assessed for all pre and post-compression parameters. The drug- excipients interaction was examined by FTIR and DSC. All formulas displayed complying with pharmacopoeial measures. The study reveals that formula prepared by utilizing drug and plasdone S630 at 1:1.5 proportion and span 20 at concentration about 30mg (trail-6) has given highest dissolution rate than contrasted with various formulas of raltegravir.
Keywor
... Show MoreCdS films were prepared by thermal evaporation at pressure (10-6torr) of 1μm thickness onto glass substrate by using (Mo) boat. The optical properties of CdS films, absorbance, transmittance and reflectance were studied in wavelength range of (300-900)nm. The refractive index, extinction coefficient, and absorption coefficient were also studied. It's found that CdS films have allowed direct and forbidden transition with energy gap 2.4eV and 2.25eV respectively and it also has high absorption coefficient (α >104cm-1).
Objectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity
... Show MoreIn this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show More