Abstract: A home-made dc sputtering is characterized by cathode potential of 250-2500 V and sputtering gas pressures of (3.5×10-2 – 1.5) mbar. This paper studies in experiment the breakdown of argon, nitrogen, and oxygen in a uniform dc electric field at different discharge gaps and cathode potentials. Paschen curves for Argon, Nitrogen, and oxygen are obtained by measuring the breakdown voltage of gas within a stainless steel vacuum chamber with two planar, stainless steel electrodes. The Paschen curves in Ar, N2, and O2 gases show that the breakdown voltage between two electrodes is a function of pd (The product of the pressure inside the chamber and distance between the electrodes). Current-voltage characteristics visualization of the
... Show MorePulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s). The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi
... Show MoreThis study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
In this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
Purepolyaniline and doped with hydrochloric acid was prepared in different molarities at room temperature. The a.c electrical properties were stadied.AC conductivityσac (ω), is found to vary as ωS in the frequency range (100Hz-10MH), S< 1and decreases indicating a dominate hopping process. Thedielectric constant ε1and dielectric loss ε2 have been determined for bulk polyaniline. ε1 decrease with the increase frequency. Electrical conductivity measurements increase with the increases both of the amount of HCl and the dose of radiation. The dielectric investigations show decrease with dose radiation.
Due to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreHydrophobic silica aerogels were successfully preparation by an ambient pressure drying method from sodium silicate (Na2SiO3) with different pH values (5, 6, 7, 8, 9 and 10). In this study, acidic HCl (1M), a basic NH4OH (1M) were selected as a catalyst to perform the surface modification in a TMCS (trimethylchlorosilane) solution. The surface chemical modification of the aerogels was assured by the Fourier transform infrared (FTIR) spectroscopic studies. Other physical properties, such as pore volume and pore size and specific surface area were determined by Brunauer-Emmett- Teller (BET) method. The effect of pH values on the bulk density of aerogel. The sol–gel parameter pH value in the sol, have marked effects on the physical proper
... Show MoreThe paper aims is to solve the problem of choosing the appropriate project from several service projects for the Iraqi Martyrs Foundation or arrange them according to the preference within the targeted criteria. this is done by using Multi-Criteria Decision Method (MCDM), which is the method of Multi-Objective Optimization by Ratios Analysis (MOORA) to measure the composite score of performance that each alternative gets and the maximum benefit accruing to the beneficiary and according to the criteria and weights that are calculated by the Analytic Hierarchy Process (AHP). The most important findings of the research and relying on expert opinion are to choose the second project as the best alternative and make an arrangement acco
... Show MoreProduction of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show More