In this work, mesoporous silica SBA-15 was prepared and functionalized with amine groups (i.e., NH2) to form NH2/SBA-15. The curcumin (CUR) was encapsulated into the surface and pore of NH2/SBA-15 to create CUR@NH2/SBA-15 as an efficient carrier in drug delivery systems (DDSs). The three samples (i.e., SBA-15, NH2/SBA-15, and CUR@NH2/SBA-15) were characterized. The study investigated the effect of the carrier dose, initial CUR concentration, pH, and contact time on the CUR loading efficiency (DLE%) via adsorption. The best DLE% for the SBA-15 and NH2/SBA-15 were found to be 45% and 89.7%, respectively. The Langmuir isotherm had a greater correlation coefficient (R2) of 0.998 for SBA-15. A pseudo-secondorder kinetic model seemed to fit well with R2 = 0.9998 for SBA-15 and R2 = 0.9993 for NH2/SBA-15. A phosphate buffer solution (PBS) with a pH of 7.4 was utilized to study the CUR release behavior. As a result, the full release after 72 h was found to have a maximum of 82.6% and 41.2% for SBA-15 and NH2/SBA-15, respectively. The first-order, Weibull, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic release models were applied. The Weibull model estimated the kinetics of the CUR release from SBA-15 and NH2/SBA-15 with R2 = 0.814 and 0.808, respectively.
Background: The best material for dental implants is polyetherketoneketone (PEKK). However, this substance is neither osteoinductive nor osteoconductive, preventing direct bone apposition. Modifying the PEKK with bioactive elements like strontium hydroxyapatite is one method to overcome this (Sr-HA). Due to the technique's capacity to provide better control over the coating's properties, RF magnetron sputtering has been found to be a particularly useful technique for deposition.
Materials and methods : With specific sputtering conditions, the RF magnetron technique was employed to provide a homogeneous and thin coating on Polyetherketoneketone substrates.. the coatings were characterized by Contact angle, adhesion test, X-ray dif
... Show MoreThe present work determines the particle size based only on the number of tracks detected in a cluster created by a hot particle on the CR-39 solid state nuclear track detector and depending on the exposure time. The mathematical model of the cross section developed here gives the relationship between alpha particle emitting from the (n, α) reaction and the number of tracks created and distribution of tracks created on the surface of the track detector. In an experiment performed during this work, disc of boron compound (boric acid or sodium tetraborate) of different weights were prepared and exposed to thermal neutron from the source. Chemical etching is processes of path formation in the detector, during which a suitable etching solut
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreGrass trimming operation is widely done in Malaysia for the purpose of maintaining highways. Large number of operators engaged in this work encounters high level of noise generated by back pack type grass trimmer used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known. For predicting the work efficiency deterioration, fuzzy tool has been used in present research. It has been established that a fuzzy computing system will help in identification and analysis of fuzzy models fuzzy system offers a convenient way of representing the relationships between the inputs and outputs of a system in the form of IF-THEN rules. The paper presents
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.