Levofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreThree series of monomers, polymers and thioester cyclic compounds containing 4H-1,2,4-triazol-3-thiol moiety were synthesized and examined for their liquid crystalline properties. All monomers, polymers and thioester compounds were characterized by elemental analysis and FTIR, 1 H-NMR and mass spectroscopy. The phase transition and mesomorphic properties were investigated by polarized optical microscope (POM) and differential scanning calorimetry (DSC). The monomer with terminal phenyl substituent display dimorphism nematic and smectic A (SmA) mesophases. The corresponding polymers derived from acrylic and phenyl acrylic acid monomers show nematic mesophase. The only thioester cyclic compound derived from terephtaloyl chloride show nemati
... Show MoreIn this present work, [4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-methoxyphenl)(A1),4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol(A2),1,1`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) dinaphthalen-2-ol (A3)]C.S was prepared in 3.5% NaCl. Corrosion prevention at (293-323) K has been studied by using electrochemical measurements. It shows that the utilized inhibitors are of mixed type based on the polarization curves. The results indicated that the inhibition efficiency changes were used with a change according to the functional groups on the benzene ring and through the electrochemical technique. Temperature increases with corrosion current
... Show MoreThe synthesis, characterization and mesomorphic properties of two new series of triazine-core based liquid crystals have been investigated. The amino triazine derivatives were characterized by elemental analysis, Fourier transforms infrared (FTIR), 1HNMR and mass spectroscopy. The liquid crystalline properties of these compounds were examined by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). DSC and POM confirmed nematic (N) and columnar mesophase textures of the materials. The formation of mesomorphic properties was found to be dependent on the number of methylene unit in alkoxy side chains.
The synthesis of new benzodiazepine, imidazole, isatin, maleimide, pyrimidine and 1,2,4-triazole derived from 2-amino-4-hydroxy-1,3,5-triazine, via its cyclocondensation reaction with different organic reagents, is described. FT-IR, 1H-NMR and as well as 13C-NMR spectra disclosed the structures of the precursors and heterocyclic derivatives formed.
A new series of Schiff bases compounds , containing an azomethine linkage was synthesized and expected to be biologically active .The structures of these compounds were identified by IR , Uv/vis spectra , melting points and followed by T.L.C.The biological activity of these compounds was studied
Eleven new 2,6-di-tert-butyl-4-(5-aryl-1,3,4-oxadiazol-2-yl)phenols 5a–k were synthesized by reacting aryl hydrazides with 3,5-di-tert butyl 4-hydroxybenzoic acid in the presence of phosphorus oxychloride. The resulting compounds were characterized based on their IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the compounds. Compounds 5f and 5j exhibited significant free-radical scavenging ability in both assays.